Deriving the Equation of an Ellipse Centered at the Origin

To derive the equation of an ellipse centered at the origin, we begin with the foci (−c,0) and (c,0). The ellipse is the set of all points (x,y) such that the sum of the distances from (x,y) to the foci is constant, as shown in Figure 5.

A horizontal ellipse centered at (0, 0) in the x y coordinate system, with Vertices at (negative a, 0) and (a, 0) and Foci at

Figure 5

If (a, 0) is a vertex of the ellipse, the distance from (-c, 0) to (a, 0) is a-(-c)=a+c. The distance from (c, 0) to (a, 0) is a-c. The sum of the distances from the foci to the vertex is

(a+c)+(a-c)=2 a

If (x, y) is a point on the ellipse, then we can define the following variables:

\begin{aligned}&d_{1}=\text { the distance from }(-c, 0) \text { to }(x, y) \\&d_{2}=\text { the distance from }(c, 0) \text { to }(x, y)\end{aligned}

By the definition of an ellipse, d_{1}+d_{2} is constant for any point (x, y) on the ellipse. We know that the sum of these distances is 2 a for the vertex (a, 0). It follows that d_{1}+d_{2}=2 a for any point on the ellipse. We will begin the derivation by applying the distance formula. The rest of the derivation is algebraic.

\begin{array}{ll}
d_{1}+d_{2}=\sqrt{(x-(-c))^{2}+(y-0)^{2}}+\sqrt{(x-c)^{2}+(y-0)^{2}}=2 a & \text { Distance formula } \\
\sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=2 a & \text { Simplify expressions. } \\
\sqrt{(x+c)^{2}+y^{2}}=2 a-\sqrt{(x-c)^{2}+y^{2}} & \text { Move radical to opposite side. } \\
(x+c)^{2}+y^{2}=\left[2 a-\sqrt{(x-c)^{2}+y^{2}}\right]^{2} & \text { Square both sides. } \\
x^{2}+2 c x+c^{2}+y^{2}=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}}+(x-c)^{2}+y^{2} & \text { Expand the squares. } \\
x^{2}+2 c x+c^{2}+y^{2}=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}}+x^{2}-2 c x+c^{2}+y^{2} & \text { Expand remaining squares. } \\
2 c x=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}}-2 c x & \text { Combine like terms. } \\
4 c x-4 a^{2}=-4 a \sqrt{(x-c)^{2}+y^{2}} & \text { Isolate the radical. } \\
c x-a^{2}=-a \sqrt{(x-c)^{2}+y^{2}} & \text { Divide by 4. } \\
{\left[c x-a^{2}\right]^{2}=a^{2}\left[\sqrt{(x-c)^{2}+y^{2}}\right]^{2}} & \text { Square both sides. } \\
c^{2} x^{2}-2 a^{2} c x+a^{4}=a^{2}\left(x^{2}-2 c x+c^{2}+y^{2}\right) & \text { Expand the squares. } \\
c^{2} x^{2}-2 a^{2} c x+a^{4}=a^{2} x^{2}-2 a^{2} c x+a^{2} c^{2}+a^{2} y^{2} & \text { Distribute } a^{2} . \\
a^{2} x^{2}-c^{2} x^{2}+a^{2} y^{2}=a^{4}-a^{2} c^{2} & \text { Rewrite. } \\
x^{2}\left(a^{2}-c^{2}\right)+a^{2} y^{2}=a^{2}\left(a^{2}-c^{2}\right) & \text { Factor common terms. } \\
x^{2} b^{2}+a^{2} y^{2}=a^{2} b^{2} & \text { set } b^{2} = a^2 - c^2 . \\
\frac{x^{2} b^{2}}{a^{2} b^{2}}+\frac{a^{2} y^{2}}{a^{2} b^{2}}=\frac{a^{2} b^{2}}{a^{2} b^{2}} & \text { Divide both sides by } a^{2} b^{2} . . \\
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 & \text { Simplify. }
\end{array}

Thus, the standard equation of an ellipse is \frac{x^2}{a^2} + \frac{y^2}{b^2}=1. This equation defines an ellipse centered at the origin. If a > b, the ellipse is stretched further in the horizontal direction, and if b > a, the ellipse is stretched further in the vertical direction.