Read this chapter on Karnaugh mapping, which is a tabular way for simplifying Boolean logic. There are several ways for representing Boolean logic: algebraic expressions, which use symbols and Boolean operations; Venn diagrams, which use distinct and overlapping circles; and tables relating inputs to outputs (for combinational logic) or tables relating inputs and current state to outputs and next state (for sequential logic). When designing sequential logic, some of the components are memory devices. Cost and processing time are considerations in using memory devices, which can be expensive. To reduce the cost or processing time the logic can be simplified. This simplification can be done using algebraic rules to manipulate the symbols and operations, analysis of the areas inside the circles for Venn diagrams, or Karnaugh maps for input/output tables.

Why learn about *Karnaugh* maps? The Karnaugh map, like Boolean algebra, is a simplification tool applicable to digital logic. See the “Toxic waste incinerator” in the Boolean algebra chapter for an example of Boolean simplification of
digital logic. The Karnaugh Map will simplify logic faster and more easily in most cases.

Boolean simplification is actually faster than the Karnaugh map for a task involving two or fewer Boolean variables. It is still quite usable at three variables, but a bit slower. At four input variables, Boolean algebra becomes tedious. Karnaugh maps
are both faster and easier. Karnaugh maps work well for up to six input variables, are usable for up to eight variables. For more than six to eight variables, simplification should be by *CAD* (computer automated design).

In theory any of the three methods will work. However, as a practical matter, the above guidelines work well. We would not normally resort to computer automation to simplify a three input logic block. We could sooner solve the problem with pencil and
paper. However, if we had seven of these problems to solve, say for a *BCD* (Binary Coded Decimal) to *seven segment decoder*, we might want to automate the process. A BCD to seven segment decoder generates the logic signals
to drive a seven segment LED (light emitting diode) display.

Examples of computer automated design languages for simplification of logic are PALASM, ABEL, CUPL, Verilog, and VHDL. These programs accept a *hardware descriptor language* input file which is based on Boolean equations and produce an
output file describing a *reduced* (or simplified) Boolean solution. We will not require such tools in this chapter. Let’s move on to Venn diagrams as an introduction to Karnaugh maps.

Source: Tony R. Kuphaldt, https://workforce.libretexts.org/Bookshelves/Electronics_Technology/Book%3A_Electric_Circuits_IV_-_Digital_Circuitry_(Kuphaldt)/08%3A_Karnaugh_Mapping

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.