Generic Programming
Read this text, which discusses the basics of generic programming and relates it to different languages.
3. Programming language support for genericity
3.6. Template specialization
A powerful feature of C++'s templates is template specialization. This allows alternative implementations to be provided based on certain characteristics of the parameterized type that is being instantiated. Template specialization has two purposes: to allow certain forms of optimization, and to reduce code bloat.
For example, consider a sort() template function. One of the primary activities that such a function does is to swap or exchange the values in two of the container's positions. If the values are large (in terms of the number of bytes it takes to store each of them), then it is often quicker to first build a separate list of pointers to the objects, sort those pointers, and then build the final sorted sequence. If the values are quite small however it is usually fastest to just swap the values in-place as needed. Furthermore, if the parameterized type is already of some pointer-type, then there is no need to build a separate pointer array. Template specialization allows the template creator to write different implementations and to specify the characteristics that the parameterized type(s) must have for each implementation to be used.
Unlike function templates, class templates can be partially specialized. That means that an alternate version of the class template code can be provided when some of the template parameters are known, while leaving other template parameters generic. This can be used, for example, to create a default implementation (the primary specialization) that assumes that copying a parameterizing type is expensive and then create partial specializations for types that are cheap to copy, thus increasing overall efficiency. Clients of such a class template just use specializations of it without needing to know whether the compiler used the primary specialization or some partial specialization in each case. Class templates can also be fully specialized, which means that an alternate implementation can be provided when all of the parameterizing types are known.