More on Bitcoin Transactions

To understand why digital signatures are integral to Bitcoin transactions, you'll need to learn a bit about the structure of Bitcoin transactions. This chapter will introduce you to what's happening "Behind the Scenes" in these transactions. We'll discuss this more in Unit 5.

Transaction Outputs and Inputs

The fundamental building block of a bitcoin transaction is a transaction output. Transaction outputs are indivisible chunks of bitcoin currency, recorded on the blockchain, and recognized as valid by the entire network. Bitcoin full nodes track all available and spendable outputs, known as unspent transaction outputs, or UTXO. The collection of all UTXO is known as the UTXO set and currently numbers in the millions of UTXO. The UTXO set grows as new UTXO is created and shrinks when UTXO is consumed. Every transaction represents a change (state transition) in the UTXO set.

When we say that a user's wallet has "received" bitcoin, what we mean is that the wallet has detected on the blockchain an UTXO that can be spent with one of the keys controlled by that wallet. Thus, a user's bitcoin "balance" is the sum of all UTXO that user's wallet can spend and which may be scattered among hundreds of transactions and hundreds of blocks. The concept of a balance is created by the wallet application. The wallet calculates the user's balance by scanning the blockchain and aggregating the value of any UTXO the wallet can spend with the keys it controls. Most wallets maintain a database or use a database service to store a quick reference set of all the UTXO they can spend with the keys they control.

Transaction chain from Joe to Gopesh being built on the blockchain displays the blockchain in three different moments, as the transaction chain from Joe to Gopesh is being built. Notice how each transaction spends an UTXO that was created in a previous transaction, turning it into a spent transaction output, or STXO. Since transaction #1 (from Joe to Alice) spends a single UTXO (from Joe) and creates a single UTXO (to Alice), it doesn't modify the UTXO set size. On the other hand, transactions #2 and #3 both create change outputs to the sender, spending a single UTXO and creating two UTXO (the payment and the change output). Therefore, each of them increases the UTXO set size by 1.

Figure 2. Transaction chain from Joe to Gopesh being built on the blockchain


A transaction output can have an arbitrary (integer) value denominated as a multiple of satoshis. Just as dollars can be divided down to two decimal places as cents, bitcoin can be divided down to eight decimal places as satoshis. Although an output can have any arbitrary value, once created it is indivisible. This is an important characteristic of outputs that needs to be emphasized: outputs are discrete and indivisible units of value, denominated in integer satoshis. An unspent output can only be consumed in its entirety by a transaction.

If an UTXO is larger than the desired value of a transaction, it must still be consumed in its entirety and change must be generated in the transaction. In other words, if you have an UTXO worth 20 bitcoin and want to pay only 1 bitcoin, your transaction must consume the entire 20-bitcoin UTXO and produce two outputs: one paying 1 bitcoin to your desired recipient and another paying 19 bitcoin in change back to your wallet. As a result of the indivisible nature of transaction outputs, most bitcoin transactions will have to generate change.

Imagine a shopper buying a $1.50 beverage, reaching into her wallet and trying to find a combination of coins and bank notes to cover the $1.50 cost. The shopper will choose exact change if available e.g. a dollar bill and two quarters (a quarter is $0.25), or a combination of smaller denominations (six quarters), or if necessary, a larger unit such as a $5 note. If she hands too much money, say $5, to the shop owner, she will expect $3.50 change, which she will return to her wallet and have available for future transactions.

Similarly, a bitcoin transaction must be created from a user's UTXO in whatever denominations that user has available. Users cannot cut an UTXO in half any more than they can cut a dollar bill in half and use it as currency. The user's wallet application will typically select from the user's available UTXO to compose an amount greater than or equal to the desired transaction amount.

As with real life, the bitcoin application can use several strategies to satisfy the purchase amount: combining several smaller units, finding exact change, or using a single unit larger than the transaction value and making change. All of this complex assembly of spendable UTXO is done by the user's wallet automatically and is invisible to users. It is only relevant if you are programmatically constructing raw transactions from UTXO.

A transaction consumes previously recorded unspent transaction outputs and creates new transaction outputs that can be consumed by a future transaction. This way, chunks of bitcoin value move forward from owner to owner in a chain of transactions consuming and creating UTXO.

The exception to the output and input chain is a special type of transaction called the coinbase transaction, which is the first transaction in each block. This transaction is placed there by the "winning" miner and creates brand-new bitcoin payable to that miner as a reward for mining. This special coinbase transaction does not consume UTXO; instead, it has a special type of input called the "coinbase". This is how bitcoin's money supply is created during the mining process.

Tip: What comes first? Inputs or outputs, the chicken or the egg? Strictly speaking, outputs come first because coinbase transactions, which generate new bitcoin, have no inputs and create outputs from nothing.