Mining Fees, Block Data, Block Headers, and Proof-of-Work

Now that we have some background on what the mining process does for Bitcoin, let's cover the specifics. This chapter covers the technical process, including mining fees, block data, block headers, and Proof-of-Work.

Mining the Block

Retargeting to Adjust Difficulty

As we saw, the target determines the difficulty and therefore affects how long it takes to find a solution to the Proof-of-Work algorithm. This leads to the obvious questions: Why is the difficulty adjustable, who adjusts it, and how?

Bitcoin's blocks are generated every 10 minutes, on average. This is bitcoin's heartbeat and underpins the frequency of currency issuance and the speed of transaction settlement. It has to remain constant not just over the short term, but over a period of many decades. Over this time, it is expected that computer power will continue to increase at a rapid pace. Furthermore, the number of participants in mining and the computers they use will also constantly change. To keep the block generation time at 10 minutes, the difficulty of mining must be adjusted to account for these changes. In fact, the Proof-of-Work target is a dynamic parameter that is periodically adjusted to meet a 10-minute block interval goal. In simple terms, the target is set so that the current mining power will result in a 10-minute block interval.

How, then, is such an adjustment made in a completely decentralized network? Retargeting occurs automatically and on every node independently. Every 2,016 blocks, all nodes retarget the Proof-of-Work. The equation for retargeting measures the time it took to find the last 2,016 blocks and compares that to the expected time of 20,160 minutes (2,016 blocks times the desired 10-minute block interval). The ratio between the actual timespan and desired timespan is calculated and a proportionate adjustment (up or down) is made to the target. In simple terms: If the network is finding blocks faster than every 10 minutes, the difficulty increases (target decreases). If block discovery is slower than expected, the difficulty decreases (target increases).

The equation can be summarized as:

New Target = Old Target * (Actual Time of Last 2016 Blocks / 20160 minutes)


Retargeting the Proof-of-Work – CalculateNextWorkRequired() in pow.cpp shows the code used in the Bitcoin Core client.

Example 13. Retargeting the Proof-of-Work – CalculateNextWorkRequired() in pow.cpp

// Limit adjustment step
    int64_t nActualTimespan = pindexLast->GetBlockTime() - nFirstBlockTime;
    LogPrintf("  nActualTimespan = %d  before bounds\n", nActualTimespan);
    if (nActualTimespan < params.nPowTargetTimespan/4)
        nActualTimespan = params.nPowTargetTimespan/4;
    if (nActualTimespan > params.nPowTargetTimespan*4)
        nActualTimespan = params.nPowTargetTimespan*4;

    // Retarget
    const arith_uint256 bnPowLimit = UintToArith256(params.powLimit);
    arith_uint256 bnNew;
    arith_uint256 bnOld;
    bnOld = bnNew;
    bnNew *= nActualTimespan;
    bnNew /= params.nPowTargetTimespan;

    if (bnNew > bnPowLimit)
        bnNew = bnPowLimit;


Note: While the target calibration happens every 2,016 blocks, because of an off-by-one error in the original Bitcoin Core client it is based on the total time of the previous 2,015 blocks (not 2,016 as it should be), resulting in a retargeting bias toward higher difficulty by 0.05%.

The parameters Interval (2,016 blocks) and TargetTimespan (two weeks as 1,209,600 seconds) are defined in chainparams.cpp.

To avoid extreme volatility in the difficulty, the retargeting adjustment must be less than a factor of four (4) per cycle. If the required target adjustment is greater than a factor of four, it will be adjusted by a factor of 4 and not more. Any further adjustment will be accomplished in the next retargeting period because the imbalance will persist through the next 2,016 blocks. Therefore, large discrepancies between hashing power and difficulty might take several 2,016 block cycles to balance out.

Tip: The difficulty of mining a bitcoin block is approximately '10 minutes of processing' for the entire network, based on the time it took to mine the previous 2,016 blocks, adjusted every 2,016 blocks. This is achieved by lowering or raising the target.

Note that the target is independent of the number of transactions or the value of transactions. This means that the amount of hashing power and therefore electricity expended to secure bitcoin is also entirely independent of the number of transactions. Bitcoin can scale up, achieve broader adoption, and remain secure without any increase in hashing power from today's level. The increase in hashing power represents market forces as new miners enter the market to compete for the reward. As long as enough hashing power is under the control of miners acting honestly in pursuit of the reward, it is enough to prevent "takeover" attacks and, therefore, it is enough to secure bitcoin.

The difficulty of mining is closely related to the cost of electricity and the exchange rate of bitcoin vis-a-vis the currency used to pay for electricity. High-performance mining systems are about as efficient as possible with the current generation of silicon fabrication, converting electricity into hashing computation at the highest rate possible. The primary influence on the mining market is the price of one kilowatt-hour of electricity in bitcoin, because that determines the profitability of mining and therefore the incentives to enter or exit the mining market.