Tangent Lines, Velocities, and Growth

Read this section for an introduction to connecting derivatives to quantities we can see in the real world. Work through practice problems 1-4.

Practice Problem Answers

Practice 1: \quad y=x^{2}

If x=1.994, then y=3.976036 so the slope between (2,4) and (x, y) is

\frac{4-y}{2-x}=\frac{4-3.976036}{2-1.994}=\frac{0.023964}{0.006} \approx 3.994

If x=2.0003, then y \approx 4.0012 so the slope between (2,4) and (x, y) is

\frac{4-y}{2-x}=\frac{4-4.0012}{2-2.0003}=\frac{-0.0012}{0.0003} \approx 4.0003


Practice 2: \quad\mathrm{m}_{\mathrm{sec}}=\frac{\mathrm{f}(-1+\mathrm{h})-(1)}{(-1+\mathrm{h})-(-1)}=\frac{(-1+\mathrm{h})^{2}-1}{\mathrm{~h}}=\frac{1-2 \mathrm{~h}+\mathrm{h}^{2}-1}{\mathrm{~h}}=\frac{\mathrm{h}(-2+\mathrm{h})}{\mathrm{h}}=\mathbf{- 2}+\mathbf{h}

As \mathrm{h} \rightarrow 0, \mathrm{~m}_{\mathrm{sec}}=-2+\mathrm{h} \rightarrow \mathbf{- 2}.


Practice 3: The average velocity between \mathrm{t}=1.5 and \mathrm{t}=2.0 is \frac{36-64 \mathrm{feet}}{2.0-1.5 \mathrm{sec}}=-56 feet per second.

The average velocity between t=2.0 and t=2.5 is \frac{0-36 \text { feet }}{2.5-2.0 \mathrm{sec}}=-72 feet per second.

The velocity at \mathrm{t}=2.0 is somewhere between -56 \mathrm{ft} / \mathrm{sec} and -72 \mathrm{ft} / \mathrm{sec}, probably about the middle of this interval: \frac{(-56)+(-72)}{2}=-\mathbf{6 4} \mathbf{~ f t} / \mathrm{sec}.


Practice 4: (a) When \mathrm{t}=9 days, the population is approximately \mathrm{P}=4,200 bacteria. When \mathrm{t}=13, \mathrm{P} \approx 5,000. The average change in population is approximately

\frac{5000-4200 \text { bacteria }}{13-9 \text { days }}=\frac{800 \text { bacteria }}{4 \text { days }}=200 \text { bacteria per day. }


(b) To find the rate of population growth at \mathrm{t}=9 days, sketch the line tangent to the population curve at the point (9,4200) and then use (9,4200) and another point on the tangent line to calculate the slope of the line. Using the approximate values (5,2800) and (9,4200), the slope of the tangent line at the point (9,4200) is approximately \frac{4200-2800 \text { bacteria }}{9-5 \text { days }}=\frac{1400 \text { bacteria }}{4 \text { days }} \approx \text{350 bacteria/day}.