Properties of Limits

Read this section to learn about the properties of limits. Work through practice problems 1-6.

Tangent Lines as Limits

If we have two points on the graph of a function, (x, f(x)) and (x+h, f(x+h)), then \Delta y=f(x+h)-f(x) and \Delta x= (x+h)-(x)=h so the slope of the secant line through those points is m_{\text {secant }}=\frac{\Delta y}{\Delta x} and the slope of the line tangent to the graph of f at the point (x, f(x)) is, by definition,

\mathrm{m}_{\text {tangent }}=\lim\limits_{\Delta x \rightarrow 0}\{ slope of the secant line \}=\lim\limits_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim\limits_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}.

Example 3: Give a geometric interpretation for the following limits and estimate their values for the function in Fig. 5:


(a) \lim\limits_{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}    (b) \lim\limits_{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}

Solution: Part (a) represents the slope of the line tangent to the graph of \mathrm{f}(\mathrm{x}) at the point (1, \mathrm{f}(1)) so

\lim\limits_{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \approx 1. Part (b) represents the slope of the line tangent to the graph of \mathrm{f}(\mathrm{x}) at the point (2, \mathrm{f}(2)) so \lim\limits_{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \approx-1.

Practice 4: Give a geometric interpretation for the following limits and estimate their values for the function in Fig. 6:


\lim\limits_{h \rightarrow 0} \frac{g(1+h)-g(1)}{h} \quad \lim\limits_{h \rightarrow 0} \frac{g(3+h)-g(3)}{h} \quad \lim\limits_{h \rightarrow 0} \frac{g(h)-g(0)}{h}