Properties of Limits

Read this section to learn about the properties of limits. Work through practice problems 1-6.

Showing that a Limit Does Not Exist

If the limit, as x approaches c, exists and equals L, then we can guarantee that the values of f(x) are as close to L as we want by restricting the values of x to be very, very close to \mathrm{c}. To show that a limit, as x approaches c, does not exist, we need to show that no matter how closely we restrict the values of x to \mathrm{c}, the values of \mathrm{f}(\mathrm{x}) are not all close to a single, finite value \mathrm{L}. One way to demonstrate that \lim\limits_{x \rightarrow c} \mathrm{f}(\mathrm{x}) does not exist is to show that the left and right limits exist but are not equal.

Another method of showing that \lim\limits_{x \rightarrow c} \mathrm{f}(\mathrm{x}) does not exist is to find two infinite lists of numbers, \left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \ldots\right\} and \left\{\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}, \ldots\right\}, which approach arbitrarily close to the value \mathrm{c} as the subscripts get larger, but so that the lists of function values, \left\{\mathrm{f}\left(\mathrm{a}_{1}\right), \mathrm{f}\left(\mathrm{a}_{2}\right), \mathrm{f}\left(\mathrm{a}_{3}\right), \mathrm{f}\left(\mathrm{a}_{4}\right), \ldots\right\} and \left\{\mathrm{f}\left(\mathrm{b}_{1}\right), \mathrm{f}\left(\mathrm{b}_{2}\right), \mathrm{f}\left(\mathrm{b}_{3}\right), \mathrm{f}\left(\mathrm{b}_{4}\right), \ldots\right\}, approach two different numbers as the subscripts get larger.


Example 6: For \mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}1 & \text { if } \mathrm{x} < 1 \\ \mathrm{x} & \text { if } 1 < \mathrm{x} < 3 \quad \text { if } 3 < \mathrm{x}\end{array} \quad\right., show that \lim\limits_{x \rightarrow 3} \mathrm{f}(\mathrm{x}) does not exist.

Solution: We can use one-sided limits to show that this limit does not exist, or we can use the list method by selecting values for one list to approach 3 from the right and values for the other list to approach 3 from the left.

One way to define values of \left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right\} which approach 3 from the right is to define \mathrm{a}_{1}=3+1, \mathrm{a}_{2}=3+\frac{1}{2}, \mathrm{a}_{3}=3+\frac{1}{3}, \mathrm{a}_{4}=3+\frac{1}{4} and, in general, \mathrm{a}_{\mathrm{n}}=3+\frac{1}{\mathrm{n}}. Then \mathrm{a}_{\mathrm{n}} > 3 so \mathrm{f}\left(\mathrm{a}_{\mathrm{n}}\right)=2 for all subscripts \mathrm{n}, and the values in the list \left\{\mathrm{f}\left(\mathrm{a}_{1}\right), \mathrm{f}\left(\mathrm{a}_{2}\right), \mathrm{f}\left(\mathrm{a}_{3}\right), \mathrm{f}\left(\mathrm{a}_{4}\right), \ldots\right\} are approaching 2. In fact, all of the \mathrm{f}\left(\mathrm{a}_{\mathrm{n}}\right)=2.

We can define values of \left\{b_{1}, b_{2}, b_{3}, b_{4}, \ldots\right\} which approach 3 from the left by b_{1}=3-1, \mathrm{b}_{2}=3-\frac{1}{2}, \mathrm{~b}_{3}=3-\frac{1}{3}, \mathrm{~b}_{4}=3-\frac{1}{4} and, in general, \mathrm{b}_{\mathrm{n}}=3-\frac{1}{\mathrm{n}}. Then \mathrm{b}_{\mathrm{n}} < 3 so \mathrm{f}\left(\mathrm{b}_{\mathrm{n}}\right)=\mathrm{b}_{\mathrm{n}}=3-\frac{1}{\mathrm{n}} for each subscript \mathrm{n}, and the values in the list \left\{\mathrm{f}\left(\mathrm{b}_{1}\right), \mathrm{f}\left(\mathrm{b}_{2}\right), \mathrm{f}\left(\mathrm{b}_{3}\right), \mathrm{f}\left(\mathrm{b}_{4}\right), \ldots\right\}=\left\{2,2.5,2.67,2.75,2.8, \ldots, 3-\frac{1}{\mathrm{n}}, \ldots\right\} approach 3.

Since the values in the lists \left\{f\left(a_{1}\right), f\left(a_{2}\right), f\left(a_{3}\right), f\left(a_{4}\right), \ldots\right\} and \left\{f\left(b_{1}\right), f\left(b_{2}\right), f\left(b_{3}\right), f\left(b_{4}\right), \ldots\right\} approach two different numbers, we can conclude that \lim\limits_{x \rightarrow 3} \mathrm{f}(\mathrm{x}) does not exist.


Example 7: Let h(x)=\left\{\begin{array}{ll}2 & \text { if } x \text { is a rational number } \\ 1 & \text { if } x \text { is an irrational number }\end{array} \quad\right. be the "holey" function. Use the list method to show that \lim\limits_{x \rightarrow 3} \mathrm{~h}(\mathrm{x}) does not exist.

Solution: Let \left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \ldots\right\} be a list of rational numbers which approach 3, for example, \mathrm{a}_{1}=3+1, \mathrm{a}_{2}=3+ 1 / 2, \ldots, \mathrm{a}_{\mathrm{n}}=3+1 / \mathrm{n}. Then \mathrm{f}\left(\mathrm{a}_{\mathrm{n}}\right) always equals 2 so \left\{\mathrm{f}\left(\mathrm{a}_{1}\right), \mathrm{f}\left(\mathrm{a}_{2}\right), \mathrm{f}\left(\mathrm{a}_{3}\right), \mathrm{f}\left(\mathrm{a}_{4}\right), \ldots\right\}=\{2,2,2, \ldots\} and the f\left(a_{n}\right) values "approach" 2. If \left\{b_{1}, b_{2}, b_{3}, b_{4}, \ldots\right\} is a list of irrational numbers which approach 3, for example, b_{1}=3+\pi, b_{2}=3+\pi / 2, \ldots, b_{n}=3+\pi / \mathrm{n}. then \left\{f\left(b_{1}\right), f\left(b_{2}\right), f\left(b_{3}\right), f\left(b_{4}\right), \ldots\right\}=\{1,1,1, \ldots\} and the f\left(b_{n}\right) "approach" 1. Since the f\left(a_{n}\right) and f\left(b_{n}\right) values approach different numbers, the limit as x \rightarrow 3 does not exist.

A similar argument will work as x approaches any number c, so for every c we have that \lim\limits_{x \rightarrow c} h(x) does not exist. The "holey" function does not have a limit as x approaches any value c.