Continuous Functions

Read this section for an introduction to what we mean when we say a function is continuous. Work through practice problems 1 and 2.

Practice Problem Answers

Practice 1: \quad f(x)=\frac{|x|}{x} \quad (Fig. 23) is continuous everywhere except at \mathbf{x}=\mathbf{0} where this function is not defined.

If a > 0, then \lim\limits{x \rightarrow a} \frac{|x|}{x}=1=\mathrm{f}(\mathrm{a}) so \mathrm{f} is continuous at \mathrm{a}. If a < 0, then \lim\limits_{x \rightarrow a} \frac{|x|}{x}=-1=\mathrm{f}(\mathrm{a}) so \mathrm{f} is continuous at \mathrm{a}.

\mathrm{f}(0) is not defined., \lim\limits_{x \rightarrow 0^{-}} \frac{|x|}{x}=-1 and \lim\limits_{x \rightarrow 0^{+}} \frac{|x|}{x}=+1 so \lim\limits_{x \rightarrow 0} \frac{|x|}{x} does not exist.

Practice 2: (a) To prove that \mathrm{kf} is continuous at \mathrm{a}, we need to prove that \mathrm{kf} satisfies the definition of continuity at \mathrm{a}: \lim\limits_{x \rightarrow a} \operatorname{kf}(\mathrm{x})=\mathrm{kf}(\mathrm{a}).

Using results about limits, we know

\lim\limits_{x \rightarrow a} \mathrm{kf}(\mathrm{x})=\mathrm{k} \lim\limits_{x \rightarrow a} \mathrm{f}(\mathrm{x})=\mathrm{kf}(\mathrm{a}) (since \mathrm{f} is assumed to be continuous at \mathrm{a}) so \mathrm{kf} is continuous at \mathrm{a}.

(b) To prove that \mathrm{f}-\mathrm{g} is continuous at \mathrm{a}, we need to prove that \mathrm{f}-\mathrm{g} satisfies the definition of continuity at \mathrm{a}: \lim\limits_{x \rightarrow a}(f(x)-g(x))=f(a)-g(a)

Again using information about limits,

\lim\limits_{x \rightarrow a}(\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x}))=\lim\limits_{x \rightarrow a} \mathrm{f}(\mathrm{x})-\lim\limits_{x \rightarrow a} \mathrm{~g}(\mathrm{x})=\mathrm{f}(\mathrm{a})-\mathrm{g}(\mathrm{a}) (since \mathrm{f} and \mathrm{g} are both continuous at \mathrm{a}) so \mathrm{f – g} is continuous at \mathrm{a}.