Practice Problems

Work through the odd-numbered problems 1-23. Once you have completed the problem set, check your answers.

Answers

1. (a) If x is within \mathbf{0. 5} unit of 3.

(b) If x is within \mathbf{0. 3} unit of 3.

(c) If \mathrm{x} is within \mathbf{0. 0 2} unit of 3.

(d) If x is within \varepsilon / 2 unit of 3.

3. (a) If x is within 0.25 unit of 2.

(b) If x is within 0.1 unit of 2.

(c) If \mathrm{x} is within \mathbf{0. 0 2} unit of 2.

(d) If \mathrm{x} is within \varepsilon / 4 unit of 2.

5. Problem 1: slope =2, \delta=\varepsilon / 2. Problem 3: slope =4, \delta=\varepsilon / 4.

General pattern: \delta=\varepsilon / slope for linear functions

7. Each board must be within 0.06 / 3=0.02 inches of 10 inches in length.

(b) 1.995824623 < x < 2.004158016

9. (a) 1.957433821 < x < 2.040827551 (b) 1.995824623 < \mathrm{x} < 2.004158016

11. (a) 0 < x < 8 (b) 2.99920004 < x < 3.00080004

13. Each piece of wire must be within 0.005996404 inches of 5 inches.

15. & 17. See Figures


19. Take \varepsilon=1 / 2 (or smaller).

If x>2 and If (x)-L \mid < \varepsilon=1 / 2 then |2-L| < 1 / 2 so 3 / 2 < L < 5 / 2.

If \mathrm{x} < 2 and \mid \mathrm{f}(\mathrm{x})-L \mathrm{k} < \varepsilon=1 / 2 then \mid 3-L \mathrm{~K} < 1 / 2 so 5 / 2 < L < 7 / 2.

There is no value of \mathrm{L} that is both larger than 5 / 2 and smaller than 5 / 2 so the limit does not exist.

21. Take \varepsilon=1 / 2 (or smaller) and suppose \mathrm{x} is within 1 of 2(1 < \mathrm{x} < 3).

If 1 < \mathrm{x} < 2 and |\mathrm{f}(\mathrm{x})-L|=|\mathrm{x}-L|=|L-x| < \varepsilon=1 / 2 then -1 / 2 < L-x < 1 / 2

so x-1 / 2 < L < x+1 / 2 and L < 2.5.

If 2 < x < 3 and |f(x)-L|=|f(x)-L|=|L-6+x| < \varepsilon=1 / 2 then -1 / 2 < L-6+x < 1 / 2

so 5.5 < L+x < 7.5 and 2.5 < L.

There is no value of \mathrm{L} that is both larger than 2.5 and smaller than 2.5 so the limit does not exist.

23. This proof is very similar to the proof of the second theorem on page 9.

Assume that \lim _{x \rightarrow a} f(x)=L and \lim _{x \rightarrow a} g(x)=M. Then, given any \varepsilon>0, we know \varepsilon / 2>0 and that there are deltas for \mathrm{f} and \mathrm{g}, \delta_{\mathrm{f}} and \delta_{\mathrm{g}}, so that

if |x-a| < \delta_{f}, then |f(x)-L| < \varepsilon / 2 ("if x is within \delta_{f} of a, then f(x) is within \varepsilon / 2 of L", and

if |x-a| < \delta_{g}, then |g(x)-M| < \varepsilon / 2 ("if x is within \delta_{g} of a, then g(x) is within \varepsilon / 2 of M").

Let \delta be the smaller of \delta_{f} and \delta_{g}. If |x-a| < \delta then |f(x)-L| < \varepsilon / 2 and |g(x)-M| < \varepsilon / 2

so \mid(\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x}))-(\mathrm{L}-\mathrm{M}))|=|(\mathrm{f}(\mathrm{x})-\mathrm{L})+(\mathrm{M}-\mathrm{g}(\mathrm{x})) \mid (rearranging the terms)

\leq|f(x)-L|+|M-g(x)| \quad (by the Triangle Inequality for absolute values)

 < \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon. \quad (by the definition of the limits for \mathrm{f} and \mathrm{g}).