The Second Derivative and the Shape of a Function f(x)

Read this section to learn how the second derivative is used to determine the shape of functions. Work through practice problems 1-9.

Practice Answers

Practice 1: See Fig. 6.

\begin{array}{l|c|c|c|l}x & f(x) & f^{\prime}(x) & f^{\prime \prime}(x) & \text { Concavity (up or down) } \\\hline 1 & + & + & - & \text { down } \\2 & + & - & - & \text { down } \\3 &
    - & - & + & \text { up } \\4 & - & 0 & - & \text { down }\end{array}

Fig. 6


Practice 2: f(x)=2 x^{3}-15 x^{2}+24 x-7.

\mathrm{f}^{\prime}(\mathrm{x})=6 \mathrm{x}^{2}-30 \mathrm{x}+24 which is defined for all \mathrm{x}.

\mathrm{f}^{\prime}(\mathrm{x})=0 if \mathrm{x}=1,4 (critical values).

\mathrm{f}^{\prime \prime}(\mathrm{x})=12 \mathrm{x}-30.

\mathrm{f}^{\prime \prime}(1)=-18 so \mathrm{f} is concave down at the critical value \mathrm{x}=1 so (1, \mathrm{f}(1))=(1,4) is a rel. max.

\mathrm{f}^{\prime \prime}(4)=+18 so \mathrm{f} is concave up at the critical value x=4 so (4, f(4))=(4,-23) is a rel. min.

Fig. 18 shows the graph of f.

Fig. 18


Practice 3: The points labeled (b) and (g) in Fig. 8 are inflection points.


Practice 4:

\begin{aligned}&f(x)=x^{4}-12 x^{3}+30 x^{2}+5 x-7 . f^{\prime}(x)=4 x^{3}-36 x^{2}+60 x+5 \\&f^{\prime \prime}(x)=12 x^{2}-72 x+60=12\left(x^{2}-6 x+5\right)=12(x-1)(x-5)\end{aligned}

The only candidates to be Inflection Points are x=1 and x=5.

If x < 1, then f^{\prime \prime}(x)=12(x-1)(x-5)=12 (neg)(neg) is positive.
If 1 < x < 5, then f^{\prime \prime}(x)=12(x-1)(x-5)=12 (pos )(neg) is negative.
If 5 < x, then f^{\prime \prime}(x)=12(x-1)(x-5)=12 (pos)(pos) is positive.

f changes concavity at x=1 and x=5 so x=1 and x=5 are Inflection Points.

Fig. 19 shows the graph of f.

Fig. 19