Some Applications of the Chain Rule

Read this section to learn how to apply the Chain Rule. Work through practice problems 1-8.

Derivative of ax

 Once we know the derivative of \mathrm{e}^{\mathrm{X}} and the Chain Rule, it is relatively easy to determine the derivative of a^{x} for any a > 0.

D\left(a^{x}\right)=a^{x} \cdot \ln a \quad for a > 0.


Proof: If a > 0, then a^{x} > 0 and a^{x}=e^{\ln \left(a^{x}\right)}=e^{x \cdot \ln a}.

D\left(a^{x}\right)=D\left(e^{\ln \left(a^{x}\right)}\right)=D\left(e^{x \cdot \ln a}\right)=e^{x \cdot \ln a} \cdot D(x \cdot \ln a)=a^{x} \cdot \ln \mathbf{a}.


Example 3: Calculate \mathbf{D}\left(7^{\mathrm{X}}\right) and \frac{\mathbf{d}}{\mathbf{d t}}\left(2^{\sin (\mathrm{t})}\right)

Solution: (a) \mathrm{D}\left(7^{\mathrm{X}}\right)=7^{\mathrm{x}} \ln 7 \approx(1.95) 7^{\mathrm{x}}.

(b) We can write \mathrm{y}=2^{\sin (\mathrm{t})} as \mathrm{y}=2^{\mathrm{u}} with \mathrm{u}=\sin (\mathrm{t}). Using the Chain Rule,

\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{dy}}{\mathrm{du}} \cdot \frac{\mathrm{du}}{\mathrm{dt}}=2^{\mathrm{u}} \cdot \ln (2) \cdot \cos (\mathrm{t})=2^{\sin (\mathrm{t})} \cdot \ln (2) \cdot \cos (\mathrm{t}).


Practice 3: \quad Calculate \mathbf{D}\left(\sin \left(2^{\mathrm{X}}\right)\right) and \frac{\mathrm{d}}{\mathrm{dt}}\left(3^{\left(\mathrm{t}^{2}\right)}\right).