Some Applications of the Chain Rule

Read this section to learn how to apply the Chain Rule. Work through practice problems 1-8.

Parametric Equations

Suppose a robot has been programmed to move in the \mathrm{xy}-plane so at time \mathrm{t} its \mathrm{x} coordinate will be \sin (t) and its \mathrm{y} coordinate will be t^{2}. Both x and y are functions of the independent parameter t, x(t)=\sin (t) and y(t)=t^{2}, and the path of the robot (Fig. 4) can be found by plotting (x, y)=(x(t), y(t)) for lots of values of t.

\begin{array}{c|c|c|c} \mathrm{t} & \mathrm{x}(\mathrm{t})=\sin (\mathrm{t}) & \mathrm{y} \mathrm{t})=\mathrm{t}^{2} & \text { plot point at} \\ \hline 0 & 0 & 0 & (0,0) \\ .5 & .48 & .25 & (.48, .25) \\ 1.0 & .84 & 1 & (.84,1) \\ 1.5 & 1.00 & 2.25 & (1,2.25) \\ 2.0 & .91 & 4 & (.91,4) \end{array} 


Typically we know \mathrm{x}(\mathrm{t}) and \mathrm{y}(\mathrm{t}) and need to find \mathrm{dy} / \mathrm{dx}, the slope of the tangent line to the graph of (\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})). The Chain Rule says that \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{dy}}{\mathrm{dx}} \cdot \frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}, so, algebraically solving for \frac{\mathrm{dy}}{\mathrm{dx}}, we get \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy} / \mathrm{dt}}{\mathrm{dx} / \mathrm{dt}}.

If we can calculate \mathrm{dy} / \mathrm{dt} and \mathrm{dx} / \mathrm{dt}, the derivatives of \mathrm{y} and \mathrm{x} with respect to the parameter \mathrm{t}, then we can determine \mathrm{dy/dx}, the rate of change of \mathrm{y} with respect to \mathrm{x}.

If \mathrm{x}=\mathrm{x}(\mathrm{t}) and \mathrm{y}=\mathrm{y}(\mathrm{t}) are differentiable with respect to \mathrm{t}, and \frac{\mathrm{dx}}{\mathrm{dt}} \neq 0,
then \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy} / \mathrm{dt}}{\mathrm{dx} / \mathrm{dt}}.


Example 8: Find the slope of the tangent line to the graph of (x, y)=\left(\sin (t), t^{2}\right) when t=2 ?
Solution: \mathrm{dx} / \mathrm{dt}=\cos (\mathrm{t}) and \mathrm{dy} / \mathrm{dt}=2 \mathrm{t} . When \mathrm{t}=2, the object is at the point \left(\sin (2), \mathbf{2}^{2}\right) \approx(.91,4) and the slope of the tangent line to the graph is \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy} / \mathrm{dt}}{\mathrm{dx} / \mathrm{dt}}=\frac{2 \mathrm{t}}{\cos (\mathrm{t})}=\frac{2 \cdot 2}{\cos (\mathbf{2})} \approx \frac{4}{-.42} \approx-9.61.


Practice 5: Graph (x, y)=(3 \cos (t), 2 \sin (t)) and find the slope of the tangent line when t=\pi/2.

When we calculated \frac{d y}{d x}, the slope of the tangent line to the graph of (\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})), we used the derivatives \frac{d x}{d t} and \frac{d y}{d t}, and each of these derivatives also has a geometric meaning:

\frac{d x}{d t} measures the rate of change of \mathrm{x}(\mathrm{t}) with respect to \mathrm{t} - it tells us whether the \mathrm{x}-coordinate is increasing or decreasing as the t-variable increases.

\frac{d y}{d t} measures the rate of change of \mathrm{y}(\mathrm{t}) with respect to \mathrm{t}.


Example 9: For the parametric graph in Fig. 5, tell whether \frac{d x}{d t}, \frac{d y}{d t} and \frac{d y}{d x} is positive or negative when \mathrm{t=2}.


Solution: As we move through the point \mathrm{B} (where \mathrm{t}=2 ) in the direction of increasing values of t, we are moving to the left so x(t) is decreasing and \frac{d x}{d t} is negative.

Similarly, the values of \mathrm{y}(\mathrm{t}) are increasing so \frac{d y}{d t} is positive. Finally, the slope of the tangent line, \frac{d y}{d x}, is negative.

(As check on the sign of \frac{d y}{d x} we can also use the result \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\text { positive }}{\text { negative}}  = \text{negative}.)


Practice 6: For the parametric graph in the previous example, tell whether \frac{d x}{d t}, \frac{d y}{d t} and \frac{d y}{d x} is positive or negative when \mathrm{t}=1 and when \mathrm{t}=3.