Practice Problems

Work through the odd-numbered problems 1-21. Once you have completed the problem set, check your answers.

Answers

1. \mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}(\mathrm{r}=\mathrm{r}(\mathrm{t})) so \frac{\mathrm{d} \mathrm{V}}{\mathrm{dt}}=4 \pi \mathrm{r}^{2} \frac{\mathrm{d} \mathrm{r}}{\mathrm{dt}}.

When \mathrm{r}=3 in.,\frac{\mathrm{d} \mathrm{r}}{\mathrm{dt}}=2 \, \mathrm{in} / \mathrm{min}, so \frac{\mathrm{d} \mathrm{V}}{\mathrm{dtt}}=4 \pi(3 \mathrm{in})^{2}(2 \, \mathrm{in} / \mathrm{min})=72 \pi \mathrm{in}^{3} / \mathrm{min} \approx
 226.19 \, \mathrm{in}^{3} / \mathrm{min}.


3. \mathrm{b}=15 in., \mathrm{h}=13 in., \frac{\mathrm{d} \mathrm{b}}{\mathrm{dt}}=3 \, \mathrm{in} / \mathrm{hr}, \frac{\mathrm{d} \mathrm{h}}{\mathrm{dt}}=-3 \, \mathrm{in} / \mathrm{hr}.

(a) \mathrm{A}=\frac{1}{2} bh so \frac{\mathrm{d} \mathrm{A}}{\mathrm{dt}}=\frac{1}{2}\left\{\mathrm{~b} \frac{\mathrm{d} \mathrm{h}}{\mathrm{dt}}+\mathrm{h} \frac{\mathrm{d} \mathrm{b}}{\mathrm{dt}}\right\}=\frac{1}{2}\{(15 \, \mathrm{in})(-3 \, \mathrm{in}
 / \mathrm{hr})+(13 \, \mathrm{in})(3 \, \mathrm{in} / \mathrm{hr})\} < 0 so \mathrm{A} is decreasing.

(b) Hypotenuse \mathrm{C}=\sqrt{\mathrm{b}^{2}+\mathrm{h}^{2}} so \frac{\mathrm{d} \mathrm{C}}{\mathrm{dt}}=\frac{\mathrm{b} \frac{\mathrm{d} \mathrm{b}}{\mathrm{dt}}+\mathrm{h} \frac{\mathrm{d} \mathrm{h}}{\mathrm{dt}}}{\sqrt{\mathrm{b}^{2}+\mathrm{h}^{2}}}=\frac{15(3)+13(-3)}{\sqrt{15^{2}+13^{2}}} > 0 so \mathrm{C} is increasing.

(c) Perimeter \mathrm{P}=\mathrm{b}+\mathrm{h}+\mathrm{C} so \frac{\mathrm{d} \mathrm{P}}{\mathrm{dt}}=\frac{\mathrm{d} \mathrm{b}}{\mathrm{dt}}+\frac{\mathrm{d} \mathrm{h}}{\mathrm{dt}}+\frac{\mathrm{d} \mathrm{C}}{\mathrm{dt}}=(3)+(-3)+\frac{6}{\sqrt{394}} > 0 so \mathrm{P} is increasing.


5. (a) \mathrm{P}=2 \mathrm{x}+2 \mathrm{y} so \frac{\mathrm{d} \mathrm{P}}{\mathrm{dt}}=2 \frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}+2 \frac{\mathrm{dy}}{\mathrm{dt}}=2(3 \, \mathrm{ft} / \mathrm{sec})+2(-2 \, \mathrm{ft} / \mathrm{sec})=2 \, \mathrm{ft}
 / \mathrm{sec}.

(b) A=x y so \frac{\mathrm{d} A}{d t}=x \frac{d y}{d t}+y \frac{d x}{d t}=(12 \, \mathrm{ft})(-2 \, \mathrm{ft} / \mathrm{sec})+(8 \mathrm{ft})(3 \, \mathrm{ft} / \mathrm{sec})=0 \, \mathrm{ft}^{2} / \mathrm{sec}.


7. \mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}=\pi \mathrm{r}^{2}(1 / 3) so \frac{\mathrm{d} \mathrm{V}}{\mathrm{dt}}=\frac{2 \pi}{3} \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}.

When \mathrm{r}=50 \mathrm{ft}. and \frac{\mathrm{dr}}{\mathrm{dt}}=6 \, \mathrm{ft} / \mathrm{hr}, then \frac{\mathrm{d} \mathrm{V}}{\mathrm{dt}}=\frac{2 \pi}{3}(50 \mathrm{ft})(6 \, \mathrm{ft} / \mathrm{hr})=200 \pi \, \mathrm{ft}^{3} / \mathrm{hr}
 \approx 628.32 \mathrm{ft}^{3} / \mathrm{hr}.


9. \mathrm{w}(\mathrm{t})=\mathrm{h}(\mathrm{t}) for all \mathrm{t} so \frac{\mathrm{d} \mathrm{w}}{\mathrm{dt}}=\frac{\mathrm{d} \mathrm{h}}{\mathrm{dt}} \cdot \mathrm{V}=\frac{1}{3} \pi r^{2} \mathrm{~h} and \mathrm{r}=\mathrm{w} / 2=\mathrm{h}
 / 2 so \mathrm{V}=\frac{1}{3} \pi(\mathrm{h} / 2)^{2} \mathrm{~h}=\frac{1}{12} \pi \mathrm{h}^{3} and \frac{\mathrm{d} \mathrm{V}}{\mathrm{dt}}=\frac{1}{4} \pi \mathrm{h}^{2} \frac{\mathrm{dh}}{\mathrm{dt}}. When \mathrm{h}=500 \, \mathrm{ft} and \frac{\mathrm{dh}}{\mathrm{dt}}=2 \, \mathrm{ft} / \mathrm{hr}, then \frac{\mathrm{d} \mathrm{V}}{\mathrm{dt}}=\frac{1}{4} \pi(500)^{2}(2)=125,000 \, \pi \, \mathrm{ft}^{3} / \mathrm{hr}.


11. Let x be the distance from the lamp post to the person, and L be the length of the shadow, both in feet. By similar triangles, \frac{\mathrm{L}}{6}=\frac{\mathrm{x}}{8} \quad so \mathrm{L}=\frac{3}{4} \mathrm{x} \cdot \frac{\mathrm{d}
 \mathrm{x}}{\mathrm{dt}}=3 \, \mathrm{ft} / \mathrm{sec}.

(a) \frac{\mathrm{d} \mathrm{L}}{\mathrm{dt}}=\frac{3}{4} \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{3}{4}(3 \, \mathrm{ft} / \mathrm{sec})=2.25 \, \mathrm{ft} / \mathrm{sec}.

(The value of \mathrm{x} does not enter into the calculations).

(b) \frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{x}+\mathrm{L})=\frac{\mathrm{dx}}{\mathrm{dt}}+\frac{\mathrm{d} \mathrm{L}}{\mathrm{dt}}=5.25 \, \mathrm{ft} / \mathrm{sec}.


13. (a) \sin \left(35^{\circ}\right)=\frac{h}{500} \quad so \mathrm{h}=500 \cdot \sin \left(35^{\circ}\right) \approx 287 \, \mathrm{ft}.

(b) \mathrm{L}= length of the string so \mathrm{h}=\mathrm{L} \cdot \sin \left(35^{\circ}\right) and \frac{\mathrm{d} \mathrm{h}}{\mathrm{dt}}=\sin \left(35^{\mathrm{O}}\right) \frac{\mathrm{d} \mathrm{L}}{\mathrm{dt}}=\sin \left(35^{\mathrm{O}}\right)(10 \, 
 \mathrm{ft} / \mathrm{sec}) \approx 5.7 \, \mathrm{ft} / \mathrm{sec}.


15. \mathrm{V}=\mathrm{s}^{3}-\frac{4}{3} \pi \mathrm{r}^{3} \cdot \mathrm{r}=\frac{1}{2}( diameter )=4 \, \mathrm{ft}, \frac{\mathrm{dr}}{\mathrm{dt}}=1 \, \mathrm{ft} / \mathrm{hr}, \mathrm{s}=12 \, \mathrm{ft}, \frac{\mathrm{ds}}{\mathrm{dt}}=3 \, \mathrm{ft}
 / \mathrm{hr}.

\frac{\mathrm{d} \mathrm{V}}{\mathrm{dt}}=3 \mathrm{~s}^{2} \frac{\mathrm{d} \mathrm{s}}{\mathrm{dt}}-4 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}}=3(12 \, \mathrm{ft})^{2} (3 \left.\mathrm{ft} / \mathrm{hr}\right)-4 \pi(4 \, \mathrm{ft})^{2}(1 \, 
 \mathrm{ft} / \mathrm{hr}) \approx 1094.94 \, \mathrm{ft}^{3} / \mathrm{hr}. The volume is increasing at about 1094.94 \, \mathrm{ft}^{3} / \mathrm{hr}.


17. Given: \quad \frac{\mathrm{d} \mathrm{V}}{\mathrm{dt}}=\mathrm{k} \cdot 2 \pi \mathrm{r}^{2} with \mathrm{k} constant. We also have \mathrm{V}=\frac{2}{3} \pi \mathrm{r}^{3} so \frac{\mathrm{dV}}{\mathrm{dt}}=2 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}}.

Therefore, \mathrm{k} \cdot 2 \pi \mathrm{r}^{2}=2 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}} so \frac{\mathrm{dr}}{\mathrm{dt}}=\mathrm{k}. The radius \mathrm{r} is changing at a constant rate.


19. (a) \mathrm{A}=5 \mathrm{x}

(b) \frac{\mathrm{d} \mathrm{A}}{\mathrm{dx}}=5 for all \mathrm{x} > 0.

(c) \mathrm{A}=5 \mathrm{t}^{2}

(d) \frac{\mathrm{d} \mathrm{A}}{\mathrm{dt}}=10 \mathrm{t}. When \mathrm{t}=1, \frac{\mathrm{d} \mathrm{A}}{\mathrm{dt}}=10 ; when \mathrm{t}=2, \frac{\mathrm{d} \mathrm{A}}{\mathrm{dt}}=20 ; when \mathrm{t}=3, \frac{\mathrm{d} \mathrm{A}}{\mathrm{dt}}=30.

(e) \mathrm{A}=10+5 \cdot \sin (\mathrm{t}) \cdot \frac{\mathrm{d} \mathrm{A}}{\mathrm{dt}}=5 \cdot \cos (\mathrm{t}).


21. (a) \tan \left(10^{\circ}\right)=\frac{40}{x} so x=\frac{40}{\tan \left(10^{\circ}\right)} \approx 226.9 \mathrm{ft}.

For parts (b) and (c) we need to work in radians since our formulas for the derivatives of the trigonometric functions assume that the angles are measured in radians: 360^{\circ} \approx 2 \pi radians so 10^{\circ} \approx 0.1745 radians and 2^{\mathrm{O}} \approx 0.0349 radians,

(b) \mathrm{x}=\frac{40}{\tan (\theta)}=40 \cot (\theta) so \frac{\mathrm{dx}}{\mathrm{dt}}=-40 \csc ^{2}(\theta) \frac{\mathrm{d} \theta}{\mathrm{dt}} and

\frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{\sin ^{2}(\theta) \frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}}{-40}=\frac{\sin ^{2}(0.1745)(-25)}{-40} \approx \frac{(0.1736)^{2}(-25)}{-40} \approx 0.0188 radians/min \approx 1.079^{\circ} / \mathrm{min}.

\frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}-40 \csc ^{2}(\theta) \frac{\mathrm{d} \theta}{\mathrm{dt}}=-40 \frac{1}{\sin ^{2}(\theta)} \frac{\mathrm{d} \theta}{\mathrm{dt}} \approx-40 \frac{1}{(0.1736)^{2}}(0.0349) \approx-46.3 \, \mathrm{ft} / \mathrm{min}. (The " - " indicates the distance to the sign is decreasing: you are approaching the sign). Your speed is 46.3 \, \mathrm{ft} / \mathrm{min}.