Newton's Method for Finding Roots

Read this section. Work through practice problems 1-6.

Practice Problem Answers

Practice 1: \quad \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}+1 so \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}+3 and the slope of the tangent line at the point (1,3) is \mathrm{f}^{\prime}(1) =6. Using the point-slope form for the equation of a line, the equation of the tangent line is y-3=6(x-1) or y=6 x-3.

The \mathrm{y}-coordinate of a point on the \mathrm{x}-axis is 0 so we need to put \mathrm{y}=0 and solve the linear equation for \mathrm{x}: 0=6 \mathrm{x}-3 so \mathrm{x}=1 / 2.

The line tangent to the graph of \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}+1 at the point (1,3) intersects the \mathrm{x}-axis at the point (\mathbf{1} / \mathbf{2}, \mathbf{0}).


Practice 2: The approximate locations of \mathrm{x}_{1} and \mathrm{x}_{2} are shown in Fig. 20.



Practice 3: \quad f(x)=x^{3}-3 x^{2}+x-1 so f^{\prime}(x)=3 x^{2}-6 x+1. x_{0}=3.

 \begin{aligned} &\mathrm{x}_{1}=\mathrm{x}_{0}-\frac{\mathrm{f}\left(\mathrm{x}_{0}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)}=3-\frac{\mathrm{f}(3)}{\mathrm{f}^{\prime}(3)}=3-\frac{2}{10}=\mathbf{2. 8} \\ &\mathrm{x}_{2}=\mathrm{x}_{1}-\frac{\mathrm{f}\left(\mathrm{x}_{1}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)}=2.8-\frac{\mathrm{f}(2.8)}{\mathrm{f}^{\prime}(2.8)}=2.8-\frac{0.232}{7.72} \approx 2.769948187 \\ &\mathrm{x}_{3}=\mathrm{x}_{2}-\frac{\mathrm{f}\left(\mathrm{x}_{2}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{2}\right)} \approx 2.769292663 \end{aligned}


Practice 4: Fig. 21 shows the first iteration of Newton's Method for x_{0}=2,3, and \mathrm{5}.


If \mathrm{x}_{0}=2, the iterates approach the root at \mathrm{a}.

If x_{0}=3, the iterates approach the root at \mathrm{c}.

If x_{0}=5, the iterates approach the root at \mathrm{a}.


Practice 5: \quad f(x)=x^{1 / 3} so f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}.

If x_{0}=1, then \quad x_{1}=1-\frac{f(1)}{f^{\prime}(1)}=1-\frac{1}{1 / 3}=1-3=-2

 x_{2}=-2-\frac{\mathrm{f}(-2)}{\mathrm{f}^{\prime}(-2)}=-2-\frac{(-2)^{1 / 3}}{\frac{1}{3}(-2)^{-2 / 3}}=-2-\frac{-2}{1 / 3}=4

\mathrm{x}_{3}=4-\frac{\mathrm{f}(4)}{\mathrm{f}^{\prime}(4)}=4-\frac{(4)^{1 / 3}}{\frac{1}{3}(4)^{-2 / 3}}=4-\frac{4}{1 / 3}=-8, and so on

If x_{0}=-3, then x_{1}=-3-\frac{f(-3)}{f^{\prime}(-3)}=-3-\frac{(-3)^{1 / 3}}{\frac{1}{3}(-3)^{-2 / 3}}=-3+9=6

x_{2}=6-\frac{f(6)}{f^{\prime}(6)}=6-\frac{6^{1 / 3}}{\frac{1}{3} 6^{-2 / 3}}=6-\frac{6}{1 / 3}=-12

The graph of the cube root \mathrm{f}(\mathrm{x})=\mathrm{x}^{1 / 3} has a shape similar to Fig. 14, and the behavior of the iterates is similar to the pattern in that figure. Unless \mathrm{x}_{0}=0 (the only root of \mathrm{f}) the iterates alternate in sign and double in magnitude with each iteration: they get progressively farther from the root with each iteration.


Practice 6: If \mathrm{x}_{0}=0.997, then \mathrm{x}_{1} \approx-0.003, \mathrm{x}_{2} \approx 166.4, \mathrm{x}_{3} \approx 83.2, \mathrm{x}_{4} \approx 41.6.

If \mathrm{x}_{0}=1.02, then \mathrm{x}_{1} \approx 0.198, \mathrm{x}_{2} \approx-25.2376, \mathrm{x}_{3} \approx-12.6, \mathrm{x}_{4} \approx-6.26