Linear Approximation and Differentials

Read this section to learn how linear approximation and differentials are connected. Work through practice problems 1-10.

Linear Approximation

The Differential of f

In Fig. 7, the change in value of the function \mathrm{f} near the point (x, f(x)) is \Delta f=f(x+\Delta x)-f(x) and the change along the tangent line is \mathrm{f}^{\prime}(\mathrm{x}) \cdot \Delta \mathrm{x}. If \Delta \mathrm{x} is small, then we have used the approximation that \Delta \mathrm{f} \approx \mathrm{f}^{\prime}(\mathrm{x}) \cdot \Delta \mathrm{x}. This leads to the definition of a new quantity, \mathrm{df}, called the differential of \mathrm{f}.


Definition: The differential of \mathbf{f} is \boldsymbol{d f} \equiv \mathbf{f}^{\prime}(\mathbf{x}) \cdot \mathbf{d} \mathbf{x} where \mathbf{d} \mathbf{x} is any real number.

The differential of f represents the change in f, as x changes from x to x+d x, along the tangent line to the graph of \mathrm{f} at the point (\mathrm{x}, \mathrm{f}(\mathrm{x})). If we take \mathrm{dx} to be the number \Delta \mathrm{x}, then the differential is an approximation of \Delta f: \Delta f \approx f^{\prime}(x) \cdot \Delta x=f^{\prime}(x) \cdot d x=d f.


Example 7: Determine the differential df of each of \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-7 \mathrm{x}, \mathrm{g}(\mathrm{x})=\sin (\mathrm{x}), and \mathrm{h}(\mathrm{r})=\pi \mathrm{r}^{2}. Solution: \quad \mathrm{df}=\mathrm{f}^{\prime}(\mathrm{x}) \cdot \mathrm{d} \mathrm{x}=\left(3 \mathrm{x}^{2}-7\right) \mathrm{dx}, \mathrm{dg}=\mathrm{g}^{\prime}(\mathrm{x}) \cdot \mathrm{dx}=\cos (\mathrm{x}) \mathrm{dx}, and \mathrm{dh}=\mathrm{h}^{\prime}(\mathrm{r}) \mathrm{dr}=2 \pi \mathrm{r} \mathrm{dr}.


Practice 9: Determine the differentials of \mathrm{f}(\mathrm{x})=\ln (\mathrm{x}), \mathrm{u}=\sqrt{1-3 \mathrm{x}}, and \mathrm{r}=3 \cos (\theta).

We will do little with differentials for a while, but are used extensively in integral calculus.