L'Hopital's Rule

Read this section to learn how to use and apply L'Hopital's Rule. Work through practice problems 1-3.

Practice Answers

Practice 1:
(a) \lim \limits_{x \rightarrow 0} \frac{1-\cos (5 x)}{3 x}. The numerator and denominator are both differentiable and both equal 0 when x=0, so we can apply l'Hô pital's Rule:

\lim \limits_{x \rightarrow 0} \frac{1-\cos (5 x)}{3 x}=\lim \limits_{x \rightarrow 0} \frac{5 \cdot \sin (5 x)}{3} \rightarrow \frac{0}{3}=0

(b) \lim \limits_{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}+2 x-8}. The numerator and denominator are both differentiable functions and they both equal 0 when x=0, so we can apply l'Hô pital's Rule:

\lim \limits_{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}+2 x-8}=\lim \limits_{x \rightarrow 2} \frac{2 x+1}{2 x+2}=\frac{5}{6}


Practice 2: \lim \limits_{x \rightarrow \infty} \frac{x^{2}+e^{x}}{x^{3}+8 x}. The numerator and denominator are both differentiable and both become arbitrarily large as x becomes large, so we can apply l'Hô pital's Rule:

\lim \limits_{x \rightarrow \infty} \frac{x^{2}+e^{x}}{x^{3}+8 x}=\lim \limits_{x \rightarrow \infty} \frac{2 x+e^{x}}{3 x^{2}+8} \rightarrow " \frac{\infty}{\infty} ". Using l'Hô pital's Rule again:

\lim \limits_{x \rightarrow \infty} \frac{2 x+e^{x}}{3 x^{2}+8}=\lim \limits_{x \rightarrow \infty} \frac{2+e^{x}}{6 x} \rightarrow " \frac{\infty}{\infty} " and again:

\lim \limits_{x \rightarrow \infty} \frac{2+e^{x}}{6 x}=\lim \limits_{x \rightarrow \infty} \frac{e^{x}}{6} \rightarrow \infty.


Practice 3: Comparing A with \mathrm{e}^{\mathrm{n}} operations to \mathrm{B} with 100 \cdot \ln (\mathrm{n}) operations. \lim \limits_{n \rightarrow \infty} \frac{e^{n}}{100 \cdot \ln (n)} \rightarrow " \frac{\infty}{\infty} " so use L'Hopital's Rule: \lim \limits_{n \rightarrow \infty} \frac{e^{n}}{100 \cdot \ln (n)}=\lim \limits_{n \rightarrow \infty} \frac{e^{n}}{100 / n}=\lim \limits_{n \rightarrow \infty} \frac{n \cdot e^{n}}{100}=\infty so B requires fewer operations than A.

Comparing B with 100 \cdot \ln (\mathrm{n}) operations to \mathrm{C} with \mathrm{n}^{5} operations.

\lim \limits_{n \rightarrow \infty} \frac{100 \cdot \ln (n)}{n^{5}} \rightarrow \frac{\infty}{\infty} \cdot \lim \limits_{n \rightarrow \infty} \frac{100 \cdot \ln (n)}{n^{5}}=\lim \limits_{n \rightarrow \infty} \frac{100 / n}{5 n^{4}}=\lim \limits_{n \rightarrow \infty} \frac{100}{5 n^{5}}=0

so B requires fewer operations than C. B requires the fewest operations of the three algorithms.

Comparing A with \mathrm{e}^{\mathrm{n}} operations to \mathrm{C} with \mathrm{n}^{5} operations. Using l'Hô pital's Rule several times:

\lim \limits_{n \rightarrow \infty} \frac{e^{n}}{n^{5}}=\lim \limits_{n \rightarrow \infty} \frac{e^{n}}{5 n^{4}}=\lim \limits_{n \rightarrow \infty} \frac{e^{n}}{20 n^{3}}=\lim \limits_{n \rightarrow \infty} \frac{e^{n}}{60 n^{2}}=\lim \limits_{n \rightarrow \infty} \frac{e^{n}}{120 n}=\lim \limits_{n \rightarrow \infty} \frac{e^{n}}{120}=\infty

so A requires more operations than C. A requires the most operations of the three algorithms.