First Application of Definite Integral

Read this section to see how some applied problems can be reformulated as integration problems. Work through practice problems 1-4.

Area between f and g

We have already used integrals to find the area between the graph of a function and the horizontal axis. Integrals can also be used to find the area between two graphs. If f(x) \geq g(x) for all x in [a,b], then we can approximate the area between f and g by partitioning the interval [a,b] and forming a Riemann sum (Fig. 2). The height of each rectangle is \mathrm{f}\left(\mathrm{c}_{\mathrm{i}}\right)-\mathrm{g}\left(\mathrm{c}_{\mathrm{i}}\right) so the area of the ith rectangle is \text { (height) } \cdot(\text { base })=\left\{\mathrm{f}\left(\mathrm{c}_{\mathrm{i}}\right)-\mathrm{g}\left(\mathrm{c}_{\mathrm{i}}\right)\right\} \cdot \Delta \mathrm{x}_{\mathrm{i}} \text {. } . This approximation of the total area is

\text { area } \approx \sum_{i=1}^{n}\left\{f\left(c_{i}\right)-g\left(c_{i}\right)\right\} \cdot \Delta x_{i}, a Riemann sum.

The limit of this Riemann sum, as the mesh of the partitions approaches 0, is the definite integral \int_{\mathrm{a}}^{\mathrm{b}}\{\mathrm{f}(x)-\mathrm{g}(x)\} \mathrm{dx}.

We will sometimes use an arrow to indicate "the limit of the Riemann sum as the mesh of the partitions approaches zero," and will write

\sum_{\mathrm{i}=1}^{\mathrm{n}}\left\{\mathrm{f}\left(\mathrm{c}_{\mathrm{i}}\right)-\mathrm{g}\left(\mathrm{c}_{\mathrm{i}}\right)\right\} \cdot \Delta \mathrm{x}_{\mathrm{i}} \longrightarrow \int_{\mathrm{a}}^{\mathrm{b}}\{\mathrm{f}(x)-\mathrm{g}(x)\} \mathrm{dx}


If \mathbf{f}(x) \geq \mathrm{g}(x) on the interval [a,b],

then \begin{aligned}
    &\left\{\begin{array}{l}
    \text { area bounded by the graphs } \\
    \text { of } \mathrm{f} \text { and } \mathrm{g} \text { and vertical } \\
    \text { lines at } x=\mathrm{a} \text { and } x=\mathrm{b}
    \end{array}\right\}=\int_{\mathrm{a}}^{\mathrm{b}}\{\mathrm{f}(x)-\mathrm{g}(x)\} \mathrm{dx} .
    \end{aligned}

.

Example 1: Find the area bounded between the graphs of f(x)=x and g(x)=3 for 1 \leq x \leq 4 (Fig. 3).

Solution: It is clear from the figure that the area between f and g is 2.5 square inches. Using the theorem, area between f and g for 1 \leq x \leq 3 is

\int_{1}^{3}\{3-x\} \mathrm{dx}=3 x-\left.\frac{x^{2}}{2}\right|_{1} ^{3}=\left(\frac{9}{2}\right)-\left(\frac{5}{2}\right)=2, and area between f and g for 3 \leq x \leq 4 is \int_{3}^{4}\{x-3\} \mathrm{dx}=\frac{x^{2}}{2}-\left.3 x\right|_{3} ^{4}=\left(\frac{-8}{2}\right)-\left(\frac{-9}{2}\right)=\frac{1}{2}.

The two integrals also tell us that the total area between f and g is 2.5 square inches.

The single integral \int_{1}^{4}\{3-x\} \mathrm{dx}=1.5 hich is not the area we want in this problem. The value of the integral is 1.5, and the value of the area is 2.5.


Practice 1: Use integrals and the graphs of \mathrm{f}(x)=1+x and g(x)=3-x to determine the area between the graphs of f and g for 0 \leq x \leq 3.


Example 2: Two objects start from the same location and travel along the same path with velocities \mathrm{v}_{\mathrm{A}}(t)=t+3 and \mathrm{v}_{\mathrm{B}}(t)=t^{2}-4 t+3 meters per second (Fig. 4). ow far ahead is A after 3 seconds? After 5 seconds?

Solution: Since \mathrm{v}_{\mathrm{A}}(t) \geq \mathrm{v}_{\mathrm{B}}^{(t)}, the "area" between the graphs of \mathrm{v}_{\mathrm{A}} and \mathrm{v}_{\mathrm{B}} represents the distance between the objects.

After 3 seconds, the distance apart \int_{0}^{3} \mathrm{v}_{\mathrm{A}}(t)-\mathrm{v}_{\mathrm{b}}(t) \mathrm{dt}=\int_{0}^{3}(t+3)-\left(t^{2}-4 t+3\right) \mathrm{dt}

=\int_{0}^{3} 5 t-t^{2} \mathrm{dt}=\frac{5}{2} t^{2}-\left.\frac{t^{3}}{3}\right|_{0} ^{3}=\left(\frac{5}{2} \cdot 9-\frac{27}{3}\right)-\left(\frac{5}{2} \cdot 0-\frac{0}{3}\right)=13 \frac{1}{2} meters.

After 5 seconds, the distance apart = \int_{0}^{5} \mathrm{v}_{\mathrm{A}}(t)-\mathrm{v}_{\mathrm{b}}(t) \mathrm{dt}=\frac{5}{2} t^{2}-\left.\frac{t^{3}}{3}\right|_{0} ^{5}=20 \frac{5}{6} \text { meters. }

If f(x) \geq g(x), we can use the simpler argument that the area of region A is \int_{a}^{b} f(x) d x and the area of region B is \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{g}(x) \mathrm{dx}, so the area of region C, the area between f and g, is area of C = (\text { area of } \mathrm{A})-(\text { area of } \mathrm{B})=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(x) \mathrm{dx}-\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{g}(x) \mathrm{dx}=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(x)-\mathrm{g}(x) \mathrm{dx}.

If the same function is not always greater, then we need to be very careful and find the intervals where \mathrm{f} \geq \mathrm{g} and the intervals where \mathrm{g} \geq \mathrm{f}.


Example 3: Find the area of the shaded region in Fig. 5.


Solution: For 0 \leq x \leq 5, f(x) \geq g(x) so the area of A is \begin{aligned}
    &\int_{0}^{5} \mathrm{f}(x)-\mathrm{g}(x) \mathrm{dx}=\int_{0}^{5}(x+3)-\left(x^{2}-4 x+3\right) \mathrm{dx} \\
    &
    \end{aligned}=\int_{0}^{5} 5 x-x^{2} \mathrm{dx}=\frac{5}{2} x^{2}-\left.\frac{x^{3}}{3}\right|_{0} ^{5}=20 \frac{5}{6}

For 5 \leq x \leq 7, \mathrm{~g}(x) \geq \mathrm{f}(x) so the area of B is

\begin{aligned}
    &\int_{5}^{7} \mathrm{~g}(x)-\mathrm{f}(x) \mathrm{dx}=\int_{5}^{7}\left(x^{2}-4 x+3\right)-(x+3) \mathrm{dx}=\int_{5}^{7} x^{2}-5 x \mathrm{dx}=\frac{x^{3}}{3}-\left.\frac{5}{2} x^{2}\right|_{5} ^{7}=12 \frac{4}{6}
    \end{aligned}

Altogether, the total area between f and g for 0 \leq x \leq 7 is

\begin{aligned}
    &\int_{0}^{5} \mathrm{f}(x)-\mathrm{g}(x) \mathrm{dx}+\int_{5}^{7} \mathrm{~g}(x)-\mathrm{f}(x) \mathrm{dx}=20 \frac{5}{6}+12 \frac{4}{6}=33 \frac{1}{2} .
    \end{aligned}