Confidence Intervals for the Mean
This section explains the need for confidence intervals and why a confidence interval is not the probability the interval contains the parameter. Then, it discusses how to compute a confidence interval on the mean when sigma is unknown and needs to be estimated. It also explains when to use t-distribution or a normal distribution. Next, it covers the difference between the shape of the t distribution and the normal distribution and how this difference is affected by degrees of freedom. Finally, it explains the procedure to compute a confidence interval on the difference between means.
Confidence Intervals Introduction
Questions
Question 1 out of 2.
Strictly speaking, what is the best interpretation of a 95% confidence interval for the mean?
A 95% confidence interval has a 0.95 probability of containing the population mean.
95% of the population distribution is contained in the confidence interval.
Question 2 out of 2.
False