Here is an introductory example of how to apply scikit-learn to
implement logistic regression. As you follow this programming example,
make sure you understand how the variable definitions relate to the
algorithm.
Logistic regression is used to model the probability of a certain class or classes based on modeling data.
The term logistic refers to the logistic curve used as the basis for logistic regression analysis.
Prediction results are assigned a probability between 0 (lowest score) and 1 (highest score).
Logistic (s curve) functions are used, which have the shape:

Mathematical Model
Key aspects of the model include:
Odds of Something Occurring
An example is the odds that a sports team will win a given game.
Log-odds (logit) of Odds
This is the logarithm to a given base of odds.
Logarithms
This is the inverse of exponentiation.
Probabilities
This is the likelihood that an event will occur expressed in a range from 0 to 1.
Model Equations
where:
odds, which range from 0 to infinity
log-odds (logarithm of the odds)
base - a positive real number not equal to 1, typically 2, 10 or e
probability, which ranges from 0 to 1, that the predicted variable equals 1
Python Example
To download the code below, click here.
"""
logistic_regression_with_scikit_learn.py
trains and uses a model to predict one of three classes for each input
"""
# Import needed libraries.
import random
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
# Set parameters.
number_of_prediction_inputs = 100
# Load test data.
X, y = load_iris(return_X_y=True)
print("X - Data Features:")
print(X)
print("y - Data Classes:")
print(y)
# Instantiate a model.
model = LogisticRegression(random_state=0)
# Train the model.
estimator = model.fit(X, y)
# Get the training score (accuracy).
score = estimator.score(X, y)
print("Score:")
print(score)
# Create shuffled prediction input data.
shuffled_input_data = X
random.shuffle(shuffled_input_data)
print("Shuffled Input Data:")
print(shuffled_input_data)
# Get prediction input data from the shuffled training data.
prediction_input = shuffled_input_data[:number_of_prediction_inputs, :]
print("Prediction Input:")
print(prediction_input)
# Make predictions.
predicted_classes = estimator.predict(prediction_input)
print("Predicted Classes: ")
print(predicted_classes)
# Get prediction probabilities for each class.
probabilities = estimator.predict_proba(prediction_input)
print("Probabilities: ")
print(probabilities)
Output is below:
X - Data Features:
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.4 3.7 1.5 0.2]
[4.8 3.4 1.6 0.2]
[4.8 3. 1.4 0.1]
[4.3 3. 1.1 0.1]
[5.8 4. 1.2 0.2]
[5.7 4.4 1.5 0.4]
[5.4 3.9 1.3 0.4]
[5.1 3.5 1.4 0.3]
[5.7 3.8 1.7 0.3]
[5.1 3.8 1.5 0.3]
[5.4 3.4 1.7 0.2]
[5.1 3.7 1.5 0.4]
[4.6 3.6 1. 0.2]
[5.1 3.3 1.7 0.5]
[4.8 3.4 1.9 0.2]
[5. 3. 1.6 0.2]
[5. 3.4 1.6 0.4]
[5.2 3.5 1.5 0.2]
[5.2 3.4 1.4 0.2]
[4.7 3.2 1.6 0.2]
[4.8 3.1 1.6 0.2]
[5.4 3.4 1.5 0.4]
[5.2 4.1 1.5 0.1]
[5.5 4.2 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5. 3.2 1.2 0.2]
[5.5 3.5 1.3 0.2]
[4.9 3.1 1.5 0.1]
[4.4 3. 1.3 0.2]
[5.1 3.4 1.5 0.2]
[5. 3.5 1.3 0.3]
[4.5 2.3 1.3 0.3]
[4.4 3.2 1.3 0.2]
[5. 3.5 1.6 0.6]
[5.1 3.8 1.9 0.4]
[4.8 3. 1.4 0.3]
[5.1 3.8 1.6 0.2]
[4.6 3.2 1.4 0.2]
[5.3 3.7 1.5 0.2]
[5. 3.3 1.4 0.2]
[7. 3.2 4.7 1.4]
[6.4 3.2 4.5 1.5]
[6.9 3.1 4.9 1.5]
[5.5 2.3 4. 1.3]
[6.5 2.8 4.6 1.5]
[5.7 2.8 4.5 1.3]
[6.3 3.3 4.7 1.6]
[4.9 2.4 3.3 1. ]
[6.6 2.9 4.6 1.3]
[5.2 2.7 3.9 1.4]
[5. 2. 3.5 1. ]
[5.9 3. 4.2 1.5]
[6. 2.2 4. 1. ]
[6.1 2.9 4.7 1.4]
[5.6 2.9 3.6 1.3]
[6.7 3.1 4.4 1.4]
[5.6 3. 4.5 1.5]
[5.8 2.7 4.1 1. ]
[6.2 2.2 4.5 1.5]
[5.6 2.5 3.9 1.1]
[5.9 3.2 4.8 1.8]
[6.1 2.8 4. 1.3]
[6.3 2.5 4.9 1.5]
[6.1 2.8 4.7 1.2]
[6.4 2.9 4.3 1.3]
[6.6 3. 4.4 1.4]
[6.8 2.8 4.8 1.4]
[6.7 3. 5. 1.7]
[6. 2.9 4.5 1.5]
[5.7 2.6 3.5 1. ]
[5.5 2.4 3.8 1.1]
[5.5 2.4 3.7 1. ]
[5.8 2.7 3.9 1.2]
[6. 2.7 5.1 1.6]
[5.4 3. 4.5 1.5]
[6. 3.4 4.5 1.6]
[6.7 3.1 4.7 1.5]
[6.3 2.3 4.4 1.3]
[5.6 3. 4.1 1.3]
[5.5 2.5 4. 1.3]
[5.5 2.6 4.4 1.2]
[6.1 3. 4.6 1.4]
[5.8 2.6 4. 1.2]
[5. 2.3 3.3 1. ]
[5.6 2.7 4.2 1.3]
[5.7 3. 4.2 1.2]
[5.7 2.9 4.2 1.3]
[6.2 2.9 4.3 1.3]
[5.1 2.5 3. 1.1]
[5.7 2.8 4.1 1.3]
[6.3 3.3 6. 2.5]
[5.8 2.7 5.1 1.9]
[7.1 3. 5.9 2.1]
[6.3 2.9 5.6 1.8]
[6.5 3. 5.8 2.2]
[7.6 3. 6.6 2.1]
[4.9 2.5 4.5 1.7]
[7.3 2.9 6.3 1.8]
[6.7 2.5 5.8 1.8]
[7.2 3.6 6.1 2.5]
[6.5 3.2 5.1 2. ]
[6.4 2.7 5.3 1.9]
[6.8 3. 5.5 2.1]
[5.7 2.5 5. 2. ]
[5.8 2.8 5.1 2.4]
[6.4 3.2 5.3 2.3]
[6.5 3. 5.5 1.8]
[7.7 3.8 6.7 2.2]
[7.7 2.6 6.9 2.3]
[6. 2.2 5. 1.5]
[6.9 3.2 5.7 2.3]
[5.6 2.8 4.9 2. ]
[7.7 2.8 6.7 2. ]
[6.3 2.7 4.9 1.8]
[6.7 3.3 5.7 2.1]
[7.2 3.2 6. 1.8]
[6.2 2.8 4.8 1.8]
[6.1 3. 4.9 1.8]
[6.4 2.8 5.6 2.1]
[7.2 3. 5.8 1.6]
[7.4 2.8 6.1 1.9]
[7.9 3.8 6.4 2. ]
[6.4 2.8 5.6 2.2]
[6.3 2.8 5.1 1.5]
[6.1 2.6 5.6 1.4]
[7.7 3. 6.1 2.3]
[6.3 3.4 5.6 2.4]
[6.4 3.1 5.5 1.8]
[6. 3. 4.8 1.8]
[6.9 3.1 5.4 2.1]
[6.7 3.1 5.6 2.4]
[6.9 3.1 5.1 2.3]
[5.8 2.7 5.1 1.9]
[6.8 3.2 5.9 2.3]
[6.7 3.3 5.7 2.5]
[6.7 3. 5.2 2.3]
[6.3 2.5 5. 1.9]
[6.5 3. 5.2 2. ]
[6.2 3.4 5.4 2.3]
[5.9 3. 5.1 1.8]]
y - Data Classes:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2]
Score:
0.96
Shuffled Input Data:
[[5.1 3.5 1.4 0.2]
[5.1 3.5 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.7 3.2 1.3 0.2]
[4.7 3.2 1.3 0.2]
[5.1 3.5 1.4 0.2]
[4.7 3.2 1.3 0.2]
[5. 3.6 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.4 1.5 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[4.8 3. 1.4 0.1]
[4.8 3. 1.4 0.1]
[5. 3.4 1.5 0.2]
[5.4 3.9 1.3 0.4]
[4.9 3. 1.4 0.2]
[4.6 3.1 1.5 0.2]
[4.6 3.4 1.4 0.3]
[5.4 3.9 1.3 0.4]
[5.1 3.7 1.5 0.4]
[4.8 3. 1.4 0.1]
[5.4 3.7 1.5 0.2]
[5.7 4.4 1.5 0.4]
[5.8 4. 1.2 0.2]
[5.4 3.9 1.7 0.4]
[5.4 3.9 1.7 0.4]
[5.2 3.4 1.4 0.2]
[5.8 4. 1.2 0.2]
[4.8 3. 1.4 0.1]
[5.4 3.7 1.5 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.6 1. 0.2]
[5.8 4. 1.2 0.2]
[4.8 3.4 1.9 0.2]
[5.1 3.8 1.5 0.3]
[5. 3.6 1.4 0.2]
[5.1 3.7 1.5 0.4]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.6 0.2]
[5.1 3.5 1.4 0.3]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5. 3.5 1.3 0.3]
[5.4 3.4 1.7 0.2]
[4.8 3. 1.4 0.3]
[5. 3.2 1.2 0.2]
[4.9 3.1 1.5 0.1]
[5. 3.4 1.6 0.4]
[5.4 3.9 1.3 0.4]
[4.7 3.2 1.6 0.2]
[4.6 3.1 1.5 0.2]
[4.8 3. 1.4 0.1]
[5. 3.5 1.3 0.3]
[4.5 2.3 1.3 0.3]
[5.1 3.5 1.4 0.3]
[5. 3.2 1.2 0.2]
[4.9 2.4 3.3 1. ]
[5. 3.4 1.5 0.2]
[5.1 3.4 1.5 0.2]
[5.7 2.8 4.5 1.3]
[5.1 3.4 1.5 0.2]
[5.1 3.5 1.4 0.2]
[5.1 3.8 1.6 0.2]
[6.7 3.1 4.4 1.4]
[5.1 3.5 1.4 0.2]
[4.8 3. 1.4 0.3]
[4.5 2.3 1.3 0.3]
[4.9 3. 1.4 0.2]
[6.2 2.2 4.5 1.5]
[5.7 4.4 1.5 0.4]
[5.1 3.5 1.4 0.2]
[5.2 2.7 3.9 1.4]
[4.9 3. 1.4 0.2]
[5. 3.4 1.6 0.4]
[6.2 2.2 4.5 1.5]
[5.1 3.5 1.4 0.2]
[5.2 4.1 1.5 0.1]
[5.1 3.8 1.6 0.2]
[5.4 3.4 1.7 0.2]
[4.4 3. 1.3 0.2]
[6.1 2.8 4. 1.3]
[5. 3.4 1.6 0.4]
[5.2 3.4 1.4 0.2]
[6.1 2.9 4.7 1.4]
[5.8 4. 1.2 0.2]
[6. 3.4 4.5 1.6]
[6.4 2.9 4.3 1.3]
[5.1 3.8 1.6 0.2]
[5.8 4. 1.2 0.2]
[5.7 2.8 4.5 1.3]
[4.6 3.1 1.5 0.2]
[5.1 3.3 1.7 0.5]
[5.4 3.4 1.7 0.2]
[5.1 3.5 1.4 0.3]
[5.5 4.2 1.4 0.2]
[5.4 3. 4.5 1.5]
[6.2 2.2 4.5 1.5]
[5.4 3.4 1.5 0.4]
[4.6 3.4 1.4 0.3]
[6.7 3.1 4.4 1.4]
[5.2 4.1 1.5 0.1]
[6.9 3.1 4.9 1.5]
[5.4 3.4 1.7 0.2]
[5.1 3.8 1.6 0.2]
[5. 3.4 1.6 0.4]
[5.8 2.6 4. 1.2]
[4.3 3. 1.1 0.1]
[5.1 3.5 1.4 0.3]
[5.1 3.8 1.6 0.2]
[5.8 2.7 5.1 1.9]
[5.9 3. 4.2 1.5]
[5.8 2.7 4.1 1. ]
[6.3 3.3 4.7 1.6]
[5.4 3. 4.5 1.5]
[5.4 3.4 1.5 0.4]
[6.3 3.3 4.7 1.6]
[5.2 3.4 1.4 0.2]
[5.7 2.6 3.5 1. ]
[6.2 2.2 4.5 1.5]
[6.3 3.3 6. 2.5]
[5.6 2.7 4.2 1.3]
[6.5 3. 5.5 1.8]
[5.2 3.5 1.5 0.2]
[5.1 3.8 1.6 0.2]
[5.1 3.5 1.4 0.2]
[7.7 3.8 6.7 2.2]
[5.4 3.9 1.3 0.4]
[7.7 3.8 6.7 2.2]
[6.8 2.8 4.8 1.4]
[6.3 2.7 4.9 1.8]
[5.9 3. 4.2 1.5]
[5.8 2.6 4. 1.2]
[5.2 3.4 1.4 0.2]
[5.8 2.7 5.1 1.9]
[5.1 3.8 1.9 0.4]
[6.3 3.3 4.7 1.6]
[6.8 3. 5.5 2.1]
[6.1 2.8 4.7 1.2]
[4.9 2.5 4.5 1.7]
[5.7 2.5 5. 2. ]
[6.9 3.1 5.4 2.1]
[5.5 3.5 1.3 0.2]
[5. 2.3 3.3 1. ]
[5.8 2.8 5.1 2.4]
[5.5 4.2 1.4 0.2]
[5.7 2.9 4.2 1.3]
[4.9 3. 1.4 0.2]
[5. 3.5 1.6 0.6]]
Prediction Input:
[[5.1 3.5 1.4 0.2]
[5.1 3.5 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.7 3.2 1.3 0.2]
[4.7 3.2 1.3 0.2]
[5.1 3.5 1.4 0.2]
[4.7 3.2 1.3 0.2]
[5. 3.6 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.4 1.5 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[4.8 3. 1.4 0.1]
[4.8 3. 1.4 0.1]
[5. 3.4 1.5 0.2]
[5.4 3.9 1.3 0.4]
[4.9 3. 1.4 0.2]
[4.6 3.1 1.5 0.2]
[4.6 3.4 1.4 0.3]
[5.4 3.9 1.3 0.4]
[5.1 3.7 1.5 0.4]
[4.8 3. 1.4 0.1]
[5.4 3.7 1.5 0.2]
[5.7 4.4 1.5 0.4]
[5.8 4. 1.2 0.2]
[5.4 3.9 1.7 0.4]
[5.4 3.9 1.7 0.4]
[5.2 3.4 1.4 0.2]
[5.8 4. 1.2 0.2]
[4.8 3. 1.4 0.1]
[5.4 3.7 1.5 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.6 1. 0.2]
[5.8 4. 1.2 0.2]
[4.8 3.4 1.9 0.2]
[5.1 3.8 1.5 0.3]
[5. 3.6 1.4 0.2]
[5.1 3.7 1.5 0.4]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.6 0.2]
[5.1 3.5 1.4 0.3]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5. 3.5 1.3 0.3]
[5.4 3.4 1.7 0.2]
[4.8 3. 1.4 0.3]
[5. 3.2 1.2 0.2]
[4.9 3.1 1.5 0.1]
[5. 3.4 1.6 0.4]
[5.4 3.9 1.3 0.4]
[4.7 3.2 1.6 0.2]
[4.6 3.1 1.5 0.2]
[4.8 3. 1.4 0.1]
[5. 3.5 1.3 0.3]
[4.5 2.3 1.3 0.3]
[5.1 3.5 1.4 0.3]
[5. 3.2 1.2 0.2]
[4.9 2.4 3.3 1. ]
[5. 3.4 1.5 0.2]
[5.1 3.4 1.5 0.2]
[5.7 2.8 4.5 1.3]
[5.1 3.4 1.5 0.2]
[5.1 3.5 1.4 0.2]
[5.1 3.8 1.6 0.2]
[6.7 3.1 4.4 1.4]
[5.1 3.5 1.4 0.2]
[4.8 3. 1.4 0.3]
[4.5 2.3 1.3 0.3]
[4.9 3. 1.4 0.2]
[6.2 2.2 4.5 1.5]
[5.7 4.4 1.5 0.4]
[5.1 3.5 1.4 0.2]
[5.2 2.7 3.9 1.4]
[4.9 3. 1.4 0.2]
[5. 3.4 1.6 0.4]
[6.2 2.2 4.5 1.5]
[5.1 3.5 1.4 0.2]
[5.2 4.1 1.5 0.1]
[5.1 3.8 1.6 0.2]
[5.4 3.4 1.7 0.2]
[4.4 3. 1.3 0.2]
[6.1 2.8 4. 1.3]
[5. 3.4 1.6 0.4]
[5.2 3.4 1.4 0.2]
[6.1 2.9 4.7 1.4]
[5.8 4. 1.2 0.2]
[6. 3.4 4.5 1.6]
[6.4 2.9 4.3 1.3]
[5.1 3.8 1.6 0.2]
[5.8 4. 1.2 0.2]
[5.7 2.8 4.5 1.3]
[4.6 3.1 1.5 0.2]
[5.1 3.3 1.7 0.5]
[5.4 3.4 1.7 0.2]
[5.1 3.5 1.4 0.3]
[5.5 4.2 1.4 0.2]
[5.4 3. 4.5 1.5]
[6.2 2.2 4.5 1.5]
[5.4 3.4 1.5 0.4]]
Predicted Classes:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1
0 0 1 0 0 0 0 0 1 0 0 1 0 2 1 0 0 1 0 0 0 0 0 2 1 0]
Probabilities:
[[8.79681649e-01 1.20307538e-01 1.08131372e-05]
[8.79681649e-01 1.20307538e-01 1.08131372e-05]
[8.53796795e-01 1.46177302e-01 2.59031285e-05]
[8.53796795e-01 1.46177302e-01 2.59031285e-05]
[8.53796795e-01 1.46177302e-01 2.59031285e-05]
[8.79681649e-01 1.20307538e-01 1.08131372e-05]
[8.53796795e-01 1.46177302e-01 2.59031285e-05]
[8.97323628e-01 1.02665167e-01 1.12050036e-05]
[7.99706325e-01 2.00263292e-01 3.03825365e-05]
[8.25383127e-01 1.74558937e-01 5.79356669e-05]
[8.61839691e-01 1.38141399e-01 1.89095833e-05]
[9.26986574e-01 7.30004562e-02 1.29693872e-05]
[8.95064974e-01 1.04895775e-01 3.92506205e-05]
[7.88177618e-01 2.11794929e-01 2.74526810e-05]
[7.88177618e-01 2.11794929e-01 2.74526810e-05]
[8.61839691e-01 1.38141399e-01 1.89095833e-05]
[9.40906153e-01 5.90890027e-02 4.84421830e-06]
[7.99706325e-01 2.00263292e-01 3.03825365e-05]
[8.25383127e-01 1.74558937e-01 5.79356669e-05]
[8.95064974e-01 1.04895775e-01 3.92506205e-05]
[9.40906153e-01 5.90890027e-02 4.84421830e-06]
[9.21914602e-01 7.80675598e-02 1.78384021e-05]
[7.88177618e-01 2.11794929e-01 2.74526810e-05]
[8.92083069e-01 1.07910759e-01 6.17176870e-06]
[9.64535656e-01 3.54620850e-02 2.25877936e-06]
[9.28349898e-01 7.16491356e-02 9.66254924e-07]
[9.26986574e-01 7.30004562e-02 1.29693872e-05]
[9.26986574e-01 7.30004562e-02 1.29693872e-05]
[8.60034106e-01 1.39955486e-01 1.04082979e-05]
[9.28349898e-01 7.16491356e-02 9.66254924e-07]
[7.88177618e-01 2.11794929e-01 2.74526810e-05]
[8.92083069e-01 1.07910759e-01 6.17176870e-06]
[8.53796795e-01 1.46177302e-01 2.59031285e-05]
[9.26584671e-01 7.34068679e-02 8.46162713e-06]
[9.28349898e-01 7.16491356e-02 9.66254924e-07]
[8.41271506e-01 1.58655904e-01 7.25903122e-05]
[9.23615524e-01 7.63726510e-02 1.18248373e-05]
[8.97323628e-01 1.02665167e-01 1.12050036e-05]
[9.21914602e-01 7.80675598e-02 1.78384021e-05]
[7.99706325e-01 2.00263292e-01 3.03825365e-05]
[8.32052869e-01 1.67892968e-01 5.41625519e-05]
[8.91740161e-01 1.08245661e-01 1.41772124e-05]
[8.03156719e-01 1.96758495e-01 8.47861140e-05]
[7.95421554e-01 2.04552763e-01 2.56832240e-05]
[9.00222082e-01 9.97646975e-02 1.32206853e-05]
[8.30668332e-01 1.69316458e-01 1.52093733e-05]
[8.20309627e-01 1.79642381e-01 4.79919885e-05]
[8.47610513e-01 1.52377535e-01 1.19520539e-05]
[7.95421554e-01 2.04552763e-01 2.56832240e-05]
[8.81389224e-01 1.18568969e-01 4.18075826e-05]
[9.40906153e-01 5.90890027e-02 4.84421830e-06]
[8.32052869e-01 1.67892968e-01 5.41625519e-05]
[8.25383127e-01 1.74558937e-01 5.79356669e-05]
[7.88177618e-01 2.11794929e-01 2.74526810e-05]
[9.00222082e-01 9.97646975e-02 1.32206853e-05]
[6.90741687e-01 3.09094698e-01 1.63615590e-04]
[8.91740161e-01 1.08245661e-01 1.41772124e-05]
[8.47610513e-01 1.52377535e-01 1.19520539e-05]
[1.08418544e-01 7.68766189e-01 1.22815267e-01]
[8.61839691e-01 1.38141399e-01 1.89095833e-05]
[8.57737250e-01 1.42246900e-01 1.58501104e-05]
[1.07669519e-02 5.83013186e-01 4.06219862e-01]
[8.57737250e-01 1.42246900e-01 1.58501104e-05]
[8.79681649e-01 1.20307538e-01 1.08131372e-05]
[9.09855663e-01 9.01327650e-02 1.15724381e-05]
[4.75535678e-02 8.43626581e-01 1.08819852e-01]
[8.79681649e-01 1.20307538e-01 1.08131372e-05]
[8.20309627e-01 1.79642381e-01 4.79919885e-05]
[6.90741687e-01 3.09094698e-01 1.63615590e-04]
[7.99706325e-01 2.00263292e-01 3.03825365e-05]
[3.09968794e-03 5.96264678e-01 4.00635634e-01]
[9.64535656e-01 3.54620850e-02 2.25877936e-06]
[8.79681649e-01 1.20307538e-01 1.08131372e-05]
[3.30493839e-02 5.28708770e-01 4.38241846e-01]
[7.99706325e-01 2.00263292e-01 3.03825365e-05]
[8.81389224e-01 1.18568969e-01 4.18075826e-05]
[3.09968794e-03 5.96264678e-01 4.00635634e-01]
[8.79681649e-01 1.20307538e-01 1.08131372e-05]
[9.33948477e-01 6.60477336e-02 3.78900866e-06]
[9.09855663e-01 9.01327650e-02 1.15724381e-05]
[8.30668332e-01 1.69316458e-01 1.52093733e-05]
[8.31024910e-01 1.68917216e-01 5.78737851e-05]
[5.81151228e-02 8.19701311e-01 1.22183566e-01]
[8.81389224e-01 1.18568969e-01 4.18075826e-05]
[8.60034106e-01 1.39955486e-01 1.04082979e-05]
[8.73285529e-03 5.96503817e-01 3.94763328e-01]
[9.28349898e-01 7.16491356e-02 9.66254924e-07]
[4.17476538e-02 4.77844283e-01 4.80408063e-01]
[3.69274341e-02 8.38990091e-01 1.24082475e-01]
[9.09855663e-01 9.01327650e-02 1.15724381e-05]
[9.28349898e-01 7.16491356e-02 9.66254924e-07]
[1.07669519e-02 5.83013186e-01 4.06219862e-01]
[8.25383127e-01 1.74558937e-01 5.79356669e-05]
[8.67785629e-01 1.32146178e-01 6.81931916e-05]
[8.30668332e-01 1.69316458e-01 1.52093733e-05]
[8.91740161e-01 1.08245661e-01 1.41772124e-05]
[9.46250501e-01 5.37475145e-02 1.98493064e-06]
[1.03123407e-02 3.65034695e-01 6.24652965e-01]
[3.09968794e-03 5.96264678e-01 4.00635634e-01]
[8.72544939e-01 1.27438925e-01 1.61360155e-05]]
Source: Don Cowan, https://www.ml-science.com/logistic-regression
This work is licensed under a Creative Commons Attribution 4.0 License.