Definition: order of an element

Let (G,⋆) be a group.

Let a ∈ G, then the order of the element a ∈ G, be the smallest positive integer n s.t. a^n=e.  If no such n exists, we say that the order is infinite.

 

Definition:

Let (G,⋆) be a group.

Let a ∈ G, then define ={a^m|m∈Z}.


Theorem 2.4.1

Let (G,⋆) be a group.

Let a∈G, then

≤G.


Example 2.4.1

Consider the group Z_{10} with addition modulo 10.  What is the order of its elements?

Consider that Z_{10}={0,1,2,3,4,5,6,7,8,9}. Note that {0} is the identity and its order is 1.

element Order Calculations
0  
|<0>|=1
1
|<1>|=10 1^{10}≡0 \pmod{10}
2
|<2>|=5 2^1≡2 \pmod{10}, 2^2≡4 \pmod{10},
2^3≡6 \pmod{10}, 2^4≡8 \pmod{10},
and 2^5≡0 \pmod{10}.
3
|<3>|=10 3^1≡3 \pmod{10}, 3^2≡6 \pmod{10},
3^3≡9 \pmod{10}, 3^4≡2 \pmod{10},
3^5≡5 \pmod{10}, 3^6≡8 \pmod{10},
3^7≡1 \pmod{10}, 3^8≡4 \pmod{10},
3^9≡7 \pmod{10}, and 
3^{10}≡0 \pmod{10}.
4
|<4>|=5 4^1≡4 \pmod{10}, 4^2≡8 \pmod{10},
4^3≡2 \pmod{10}, 4^4≡6 \pmod{10},
and 4^5≡0 \pmod{10}.
5
|<5>|=2 5^1≡5 \pmod{10},
and  5^2≡0 \pmod{10}.
6
|<6>|=5 6^1≡6 \pmod{10}, 6^2≡2 \pmod{10},
6^3≡8 \pmod{10}, 6^4≡4 \pmod{10}
and 6^5≡0 \pmod{10}.
7
|<7>|=10 7^1≡7 \pmod{10}, 7^2≡4 \pmod{10},
7^3≡1 \pmod{10}, 7^4≡8 \pmod{10},
7^5≡5 \pmod{10}, 7^6≡2 \pmod{10},
7^7≡9 \pmod{10}, 7^8≡6 \pmod{10},
7^9≡3 \pmod{10}, and
7^{10}≡0 \pmod{10}.
8
|<8>|=5 8^1≡8 \pmod{10}, 8^2≡6 \pmod{10},
8^3≡4 \pmod{10}, 8^4≡2 \pmod{10},
and  8^5≡0 \pmod{10}.
9 |<9>|=10 9^1≡9 \pmod{10}, 9^2≡8 \pmod{10},
9^3≡7 \pmod{10}, 9^4≡6 \pmod{10},
9^5≡5 \pmod{10}, 9^6≡4 \pmod{10},
9^7≡3 \pmod{10}, 9^8≡2 \pmod{10},
9^9≡1 \pmod{10}

and 9^{10}≡0 \pmod{10}.




Note

Let (G,⋆) be a group.

Let (G,⋆) be a group

Let a ∈ G, then <a> is called cyclic subgroup of G.


Definition: Cyclic subgroup

If  G= for some a ∈ G, then G is called a cyclic group.


Example 2.4.1

U(15)={1,2,4,7,8,11,13,14} and ⋆ = ∙ \pmod{15}.

Let a ∈ U (15) and b ∈ U (15).

Then a(x)+15(y)=1 and ab(x)+15 by=b  therefore U(15) is closed.

Example 2.4.1

Since U(15) is a finite group, the order of the group is |U(15)|=8.

However, U(15) is not a cyclic group. 

Proof: (by exhaustion)

Let a ∈ U(15).

We will show that ∄a∈U(15), s.t. ||=8.

||=1 since 1^1≡1 \pmod{15}

||=4 since 2^4≡1 \pmod{15}

||=2 since 4^2≡1 \pmod{15}

||=4 since 7^4≡1 \pmod{15}

||=4 since 8^4≡1 \pmod{15}

||=2 since 11^2≡1 \pmod{15}

||=4 since 13^4≡1 \pmod{15}

||=2 since 14^2≡1 \pmod{15}

Since ∄a∈U(15), s.t. ||=8, U(15) is not a cyclic group.


Example 2.4.2

Prove that (U(14),(∙ \pmod{14})) is cyclic.

Example 2.4.2

Proof:

We will show that ∃a∈U(14) s.t. ||=|U(14)|.

Consider  U(14)={1,3,5,9,11,13} where |U(14)|=6.

Consider 3^1 ≡ 3 \pmod{14}, 3^2 ≡ 9 \pmod{14}, 3^3≡13 \pmod{14}3^4≡11 \pmod{14}3^5≡5 \pmod{14} and 3^6≡1 \pmod{14}.

||=6 since 3^6≡1 \pmod{14}.

Thus ||=6.

Therefore, U(14) is cyclic and 3 is a generator.


Example 2.4.1

Is (\mathbb{Z},+) cyclic group?  If so, what are the possible generators?

Yes, (\mathbb{Z},+) is a cyclic group that is generated by ±1.

Proof of being a cyclic group:

Since the group generated by 1 contains 1,  the identity  0,  and the inverse of 1,(−1), as well as all multiples of 1 and (−1), (\mathbb{Z},+) is cyclic.

Possible Generators:

Note 1^n is 1+1+⋯+1 with n terms when n > 0 and (−1)+(−1)+⋯+(−1) with n terms when n is <0.

We shall show Z==.

Consider that 1^n means 1+1+⋯+1 with n terms and that 1^{−n} means +(−1)+(−1)+⋯+(−1) with n terms. 

It should be clear that 1^n will generate Z+ and that 1^{−n} will generate Z−.  Note that 1^0 is interpreted as 0 ⋅ 1=0.  

={…,−3,−2,−1,0,1,2,3,…}.

Thus <1> is a generator of (Z,+).

Similarly, we will show that <−1>is a generator of (Z,+).

Consider that (−1)^n means +(−1)+(−1)+⋯+(−1) with n terms and that 1^{−n} means 1+1+⋯+1 with n terms. 

It should be clear that 1^n will generate Z− and that 1^{−n} will generate Z+={…,−3,−2,−1,0,1,2,3,…}.

Thus the generators of (Z,+) are <1> and <−1>.


Properties:

Theorem 2.4.2

Cyclic groups are abelian.

Proof:

Let (G,⋆) be a group.

If G is cyclic, then G is abelian.

Assume that G is cyclic.

Then G= for some g ∈ G.

Let a, b ∈ G.

We will show ab=ba.

Then a=g^m and b=g^n, m, n ∈ Z.

Consider ab=g^m g^n
        =g^{m+n}
        =g^{n+m}
        =g^ng^m
        =ba

Hence G is abelian.

Note

The converse is not true.  Specifically, if a group is abelian, it is not necessarily cyclic.  A counterexample is (U(15), ∙ ) since it is abelian but not cyclic.


Theorem 2.4.3

A subgroup of a cyclic group will be cyclic.

Let (G,⋆) be a cyclic group.  If H≤G, then H is a cyclic group.

Proof

Let G=,g ∈ G.

We will show H= for some k ∈ Z.

There are two cases to consider.


Case 1:  H={e}


Let H={e}, then we are done since e⋆e=e thus |H|=||=1.

Case 2:  H≠{e}

Let H≠{e}.

Thus ∃h ∈ H s.t. h≠e.

Since h ∈ H, h ∈ G.

Hence h=g^m for some m ∈ Z.  

Without loss of generality, we may assume m ∈ N.


Define S={n ∈ N | g^n ∈ H} ⊆ N.

Since S(≠{}) by the well ordering principle S has a smallest element k. 

Let k ∈ Z.

We shall show that H=.

Since g^k ∈ H, < g^k >≤H.


Let h∈H.

We shall show that h ∈ .

Since h∈H, h=g^m,m ∈ Z.

Since k, m ∈ Z , by the division algorithm, there exists q ,r s.t. m=qk+r, 0 ≤ r < k.

Then g^m=g^{qk} g^r and g^{m−qk}=g^r.

Since g^m, g^{qk} ∈ H, then g^r ∈ H.

Since k is the smallest, r = 0.  (I think this is because g^0 = e)

Therefore g^m=(g^k)^q ∈ .

Thus H ≤ .


Note
Converse is not true.


Theorem 2.4.4

Let G be a cyclic group s.t. G= and |G|=n.

Then a^k = e if n|k.

Proof

Let G= with a^n=e.


={e,a,a^2…,a^{n−1}}.

Let a^k = e, k ∈ Z.

Since by the division algorithm, unique integers q and r exist such that   k=nq+r, 0 ≤ r < n, q, r ∈ Z.

Consider a^r=a^{k−nq} =a^k(a^n)^{−q}

Note: a^k=e is our assumption & n is the order of group.

=ee^{−q}

=e.


Hence r=0.

Thus k=nq.

Therefore n|k

Conversely, assume that n|k.

Then k = nm, m ∈ Z.

a^k=a^{nm}.
     =(a^n)^m
     =e^m
     =e.

Hence the result.


Theorem 2.4.5

=

Let G= be a cyclic group with |G|=n.


Let b ∈ G.

If b=a^k then |b|=\dfrac{n}{d}, d=gcd(k,n).

Answer

Let G= with |G|=n and a ∈ G.

Let a^n=e.

We will show that =.


Let x∈.

Since gcd(n,k)=d for some d∈Z+, d|n and d|k.

Thus, k=md, m ∈ Z.

Consider an arbitrary power of a^k, (a^k)^j ∈ .

(a^k)^j = (a^{md})^j=(a^d)^{jm} \in  \in .

Let d=xn+yk,n,k ∈ Z.

Using the division algorithm, (a^{xn+yk})^h=(a^n)^{xh}(a^k)^{yh},n ,k ,h ∈ Z  =(a^k)^{yh} ∈ .

Thus a^k=a^d.

Now we want to show |a^k|=\dfrac{n}{d}.

Consider (a^k)\dfrac{n}{d}=(a^n)\dfrac{k}{d}=e\dfrac{k}{d}=e.

Thus |a^k| ≤ \dfrac{n}{d}.

Now consider (a^d)\dfrac{n}{d}=(a^n)=e ⇒ |a^d| ≤ \dfrac{n}{d}.

Now consider 0 ≤ i < \dfrac{n}{d}.

Thus di, where d is positive since it is the greatest common denominator.

Thus (a^d)^i=a^{di} ≠ e for di.

Then we can show |a^d|=\dfrac{n}{d}.

Consider |a^k| = || = || = |a^d| =\dfrac{n}{d}.

Hence |ak|=\dfrac{n}{d}.


Theorem 2.4.1

A group of prime order is cyclic.

Proof:

Let G be a group s.t. |G|=p, where p is a prime number.

Let g ∈ G s.t. is a subgroup of G.

Since p>1, g≠{e}.

If G is cyclic,  ∃g^k=e, for some k ∈ Z.

By the division algorithm, k=nq+r where 0 ≤ r < n.

Hence, e=g^k=g^{nq+r}=g^{nq}g^r=eg^r=g^r.

Since the smallest positive integer k such that g^k=e is n, r = 0.  Thus n | k.

Conversely, if n | k, then k=nm, m ∈ Z

Consequently, g^k=g^{nm}=(g^n)^m=e^m=e.

Thus, || divides |G| if G is cyclic.

Consider that the only two divisors of a prime number are the prime number itself and 1.

Since p>1, |G|=p.

Since |G|=p, Gis cyclic.


 
Example 2.4.1

List the cyclic subgroups of U(30).

U(30)={1,7,11,13,17,19,23,29}.

Thus |U(30)|=8.

k
Calculations |k|
7
7^1≡7 \pmod{30}, 7^2≡19 \pmod{30},
7^3≡13 \pmod{30}, 7^4≡1 \pmod{30}
4
11 11^1≡11 \pmod{30},
11^2≡1 \pmod{30}
2
13
13^1≡13 \pmod{30},
13^2≡19 \pmod{30}, 13^3≡7 \pmod{30}, 13^4≡1 \pmod{30}
4
17 17^1≡17 \pmod{30},
17^2≡19 \pmod{30}, 17^3≡23 \pmod{30}, 17^4≡1 \pmod{30}
4
19 19^1≡19 \pmod{30},
19^2≡1 \pmod{30}
2
23 23^1≡23 \pmod{30},
23^2≡19 \pmod{30}, 23^3≡17 \pmod{30},  23^4≡1 \pmod{30}
4
29 29^1≡29 \pmod{30},
29^2≡1 \pmod{30}
2


Since ∄a∈U(30) s.t. ||=|U(30)|=8, U(30) is not a cyclic group.

However the following subgroups of U(30) are cyclic: {1,7,13,19}, {1,17,19,23}, {1,11},  {1,19}, {1,29} and {1}.


Source: Pamini Thangarajah, https://math.libretexts.org/Courses/Mount_Royal_University/MATH_2101_Abstract_Algebra_I/Chapter_2%3A_Groups/2.4%3A_Introduction_to_cyclic_groups
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.