This section elaborates on how to describe data. In particular, you will learn about the relative frequency histogram. Complete the exercises and check your answers.
ANSWERS
-
The vertical scale on one is the frequencies and on the other is the relative frequencies.
- \( \begin{array}{r|lllllll} 5 & 3 & & & & & \\ 6 & 8 & 9 & & & & \\ 7 & 0 & 0 & 0 & 5 & 6 & 7 & \\ 8 & 0 & 2 & 3 & 5 & 5 & 5 & 8 \\ 9 & 2 & 3 & 6 & & & \\ 10 & 0 & & & & & \end{array} \)
Frequency and relative frequency histograms are similarly generated.
- Noting that \(n=10\) the relative frequency table is:
\( \begin{array}{c|cccc} x & -1 & 0 & 1 & 2 \\ \hline f / n & 0.3 & 0.4 & 0.2 & 0.1 \end{array}\)
Since \(n\) is unknown, \(a\) is unknown, so the histogram cannot be constructed.
\( \begin{array}{r|l|llll} 8 & 7 & & & \\ 9 & 9 & & & \\ 10 & 0 & 5 & 5 & 7 & 8 \\ 11 & 8 & 9 & & & \\ 12 & 5 & & & \end{array}\)
- \(\text { Noting } n=300 \text {, the relative frequency table is therefore: }\)
\( \begin{array}{c|cccc} \text { Blood Type } & O & A & B & A B \\ \hline f / n & 0.4533 & 0.4 & 0.1067 & 0.04 \end{array} \)
\(6\) | ||
\(7\) | ||
\(8\) | \(7\) | |
\(9\) | \(9\) | |
\(10\) | \( 0 \quad 5 \quad 5 \quad 7 \quad 8\) | |
\(11\) | \( 8 \quad 9 \) | |
\(12\) | \(5\) | |
\(13\) | ||
\(14\) | ||
\(15\) | ||
\(16\) | ||
\(6\) | ||
\(7\) | ||
\(8\) | ||
\(9\) | ||
\(10\) | ||
\(11\) | ||
\(12\) | ||
\(13\) | \(3\quad 7 \quad 8 \quad 8 \quad 9\) | |
\(14\) | \(0 \quad 2 \quad 5\) | |
\(15\) | \(2\) | |
\(16\) | \(0\) | |
\(6\) | \(0\) | \(9\) |
\(7\) | \(4\) | \(4 \quad 9\) |
\(8\) | \(0\) | \(0 \quad 2 \quad 2 \quad 2 \quad 2 \quad 3 \quad 3\) |
\(9\) | ||
\(10\) | ||
\(11\) | ||
\(12\) | ||
\(13\) | ||
\(14\) | ||
\(15\) | ||
\(16\) |
\( \begin{array}{c|ccc} \text { Length } & 130 \sim 139 & 140 \sim 149 & 150 \sim 159 \\ \hline f & 5 & 3 & 1 \end{array} \)
\( \begin{array}{c|c} \text { Length } & 160 \sim 169 \\ \hline f & 1 \end{array} \)
\( \begin{array}{c|ccc} \text { Length } & 60 \sim 69 & 70 \sim 79 & 80 \sim 89 \\ \hline f & 1 & 2 & 7 \end{array} \)
The relative frequency tables are given below in the same order.
\( \begin{array}{c|ccc} \text { Length } & 80 \sim 89 & 90 \sim 99 & 100 \sim 109 \\ \hline f / n & 0.1 & 0.1 & 0.5 \end{array}\)
\(\begin{array}{c|cc} \text { Length } & 110 \sim 119 & 120 \sim 129 \\ \hline f / n & 0.2 & 0.1 \end{array} \)
\( \begin{array}{c|ccc} \text { Length } & 130 \sim 139 & 140 \sim 149 & 150 \sim 159 \\ \hline f / n & 0.5 & 0.3 & 0.1 \end{array} \)
\( \begin{array}{c|c} \text { Length } & 160 \sim 169 \\ \hline f / n & 0.1 \end{array} \)
\( \begin{array}{c|ccc} \text { Length } & 60 \sim 69 & 70 \sim 79 & 80 \sim 89 \\ \hline f / n & 0.1 & 0.2 & 0.7 \end{array} \)
-
- \(19\).
- \(20\).