Completion requirements
This summary of algebraic operations on complex numbers will prepare you for solving quadratic equations with no solutions and the related implications for graphing quadratic and polynomial functions.
Simplifying Powers of i
The powers of are cyclic. Let's look at what happens when we raise
to increasing powers.
We can see that when we get to the fifth power of , it is equal to the first power. As we continue to multiply
by increasing powers, we will see a cycle of four. Let's examine the next four powers of
.
The cycle is repeated continuously: , every four powers.
EXAMPLE 8
Simplifying Powers of 
Solution
Since , we can simplify the problem by factoring out as many factors of
as possible. To do so, first determine how many times 4 goes into
.