This is a refresher on solving quadratic equations using the square root property. This section assumes you have been exposed to simplifying roots algebraically.
Using the Square Root Property
When there is no linear term in the equation, another method of solving a quadratic equation is by using the square root property, in which we isolate the term and take the square root of the number on the other side of the equals sign. Keep in mind that sometimes we may have to manipulate the equation to isolate the
term so that the square root property can be used.
THE SQUARE ROOT PROPERTY
With the term isolated, the square root property states that:
where is a nonzero real number.
HOW TO
Given a quadratic equation with an term but no
term, use the square root property to solve it.
1. Isolate the term on one side of the equal sign.
2. Take the square root of both sides of the equation, putting sign before the expression on the side opposite the squared term.
3. Simplify the numbers on the side with the sign.
EXAMPLE 6
Solving a Simple Quadratic Equation Using the Square Root Property
Solve the quadratic using the square root property: .
Solution
Take the square root of both sides, and then simplify the radical. Remember to use sign before the radical symbol.
EXAMPLE 7
Solving a Quadratic Equation Using the Square Root Property
Solve the quadratic equation: .
Solution
First, isolate the term. Then take the square root of both sides.
TRY IT #6
Solve the quadratic equation using the square root property: .
Source: Rice University, https://openstax.org/books/college-algebra/pages/2-5-quadratic-equations
This work is licensed under a Creative Commons Attribution 4.0 License.