A String
is simply a sequence of characters. There are different ways to create Strings – either as a string literal or as a String object using the String()
constructor. Strings can be compared to an array of characters and are often accessed similarly. Understanding them is crucial as they play a significant role in input and manipulation within coding.
The String
object is used to represent and manipulate a
sequence of characters.
Strings are useful for holding data that can be represented in text form. Some of the
most-used operations on strings are to check their length
, to build and concatenate them using the
+ and += string operators,
checking for the existence or location of substrings with the
indexOf()
method, or extracting substrings
with the substring()
method.
Strings can be created as primitives, from string literals, or as objects, using the
String()
constructor:
const string1 = "A string primitive"; const string2 = 'Also a string primitive'; const string3 = `Yet another string primitive`;
const string4 = new String("A String object");
String primitives and string objects share many behaviors, but have other important differences and caveats. See "String primitives and String objects" below.
String literals can be specified using single or double quotes, which are treated
identically, or using the backtick character `. This last form specifies a template literal:
with this form you can interpolate expressions. For more information on the syntax of string literals, see lexical grammar.
There are two ways to access an individual character in a string. The first is the
charAt()
method:
"cat".charAt(1); // gives value "a"
The other way is to treat the string as an array-like object, where individual characters correspond to a numerical index:
"cat"[1]; // gives value "a"
When using bracket notation for character access, attempting to delete or assign a
value to these properties will not succeed. The properties involved are neither writable
nor configurable. (See Object.defineProperty()
for more information).
Use the less-than and greater-than operators to compare strings:
const a = "a"; const b = "b"; if (a < b) { // true console.log(`${a} is less than ${b}`); } else if (a > b) { console.log(`${a} is greater than ${b}`); } else { console.log(`${a} and ${b} are equal.`); }
Note that all comparison operators, including ===
and ==
,
compare strings case-sensitively. A common way to compare strings
case-insensitively is to convert both to the same case (upper or lower)
before comparing them.
function areEqualCaseInsensitive(str1, str2) { return str1.toUpperCase() === str2.toUpperCase(); }
The choice of whether to transform by toUpperCase()
or toLowerCase()
is mostly arbitrary, and neither one is fully robust when extending
beyond the Latin alphabet. For example, the German lowercase letter ß
and ss
are both transformed to SS
by toUpperCase()
, while the Turkish letter ı
would be falsely reported as unequal to I
by toLowerCase()
unless specifically using toLocaleLowerCase("tr")
.
const areEqualInUpperCase = (str1, str2) => str1.toUpperCase() === str2.toUpperCase(); const areEqualInLowerCase = (str1, str2) => str1.toLowerCase() === str2.toLowerCase(); areEqualInUpperCase("ß", "ss"); // true; should be false areEqualInLowerCase("ı", "I"); // false; should be true
A locale-aware and robust solution for testing case-insensitive equality is to use the Intl.Collator
API or the string's localeCompare()
method - they share the same interface - with the sensitivity
option set to "accent"
or "base"
.
const areEqual = (str1, str2, locale = "en-US") => str1.localeCompare(str2, locale, { sensitivity: "accent" }) === 0; areEqual("ß", "ss", "de"); // false areEqual("ı", "I", "tr"); // true
The localeCompare()
method enables string comparison in a similar fashion as strcmp()
- it allows sorting strings in a locale-aware manner.
Note that JavaScript distinguishes between String
objects and
primitive string values. (The same is true of
Boolean
and Numbers
.)
String literals (denoted by double or single quotes) and strings returned from
String
calls in a non-constructor context (that is, called without using
the new
keyword) are primitive strings. In contexts where a
method is to be invoked on a primitive string or a property lookup occurs, JavaScript
will automatically wrap the string primitive and call the method or perform the property
lookup on the wrapper object instead.
const strPrim = "foo"; // A literal is a string primitive const strPrim2 = String(1); // Coerced into the string primitive "1" const strPrim3 = String(true); // Coerced into the string primitive "true" const strObj = new String(strPrim); // String with new returns a string wrapper object. console.log(typeof strPrim); // "string" console.log(typeof strPrim2); // "string" console.log(typeof strPrim3); // "string" console.log(typeof strObj); // "object"
Warning: You should rarely find yourself using String
as a constructor.
String primitives and String
objects also give different results when
using eval()
. Primitives passed to
eval
are treated as source code; String
objects are treated as
all other objects are, by returning the object. For example:
const s1 = "2 + 2"; // creates a string primitive const s2 = new String("2 + 2"); // creates a String object console.log(eval(s1)); // returns the number 4 console.log(eval(s2)); // returns the string "2 + 2"
For these reasons, the code may break when it encounters String
objects
when it expects a primitive string instead, although generally, authors need not worry
about the distinction.
A String
object can always be converted to its primitive counterpart with
the valueOf()
method.
console.log(eval(s2.valueOf())); // returns the number 4
Many built-in operations that expect strings first coerce their arguments to strings (which is largely why String
objects behave similarly to string primitives). The operation can be summarized as follows:
undefined
turns into "undefined"
.null
turns into "null"
.true
turns into "true"
; false
turns into "false"
.toString(10)
.toString(10)
.TypeError
."string"
as hint), toString()
, and valueOf()
methods, in that order. The resulting primitive is then converted to a string.There are several ways to achieve nearly the same effect in JavaScript.
`${x}`
does exactly the string coercion steps explained above for the embedded expression.String()
function: String(x)
uses the same algorithm to convert x
, except that Symbols don't throw a TypeError
, but return "Symbol(description)"
, where description
is the description of the Symbol.+
operator: "" + x
coerces its operand to a primitive instead of a string, and, for some objects, has entirely different behaviors from normal string coercion. See its reference page for more details.Depending on your use case, you may want to use `${x}`
(to mimic built-in behavior) or String(x)
(to handle symbol values without throwing an error), but you should not use "" + x
.
Strings are represented fundamentally as sequences of UTF-16 code units. In UTF-16 encoding, every code unit is exact 16 bits long. This means there are a maximum of 216, or 65536 possible characters representable as single UTF-16 code units. This character set is called the basic multilingual plane (BMP),
and includes the most common characters like the Latin, Greek, Cyrillic
alphabets, as well as many East Asian characters. Each code unit can be
written in a string with \u
followed by exactly four hex digits.
However, the entire Unicode character set is much, much bigger than 65536. The extra characters are stored in UTF-16 as surrogate pairs,
which are pairs of 16-bit code units that represent a single character.
To avoid ambiguity, the two parts of the pair must be between 0xD800
and 0xDFFF
, and these code units are not used to encode single-code-unit characters. (More precisely, high surrogates have values between 0xD800
and 0xDBFF
, inclusive, while low surrogates have values between 0xDC00
and 0xDFFF
, inclusive.) Each Unicode character, comprised of one or two UTF-16 code units, is also called a Unicode code point. Each Unicode code point can be written in a string with \u{xxxxxx}
where xxxxxx
represents 1–6 hex digits.
A "lone surrogate" is a 16-bit code unit satisfying one of the descriptions below:
0xD800
–0xDBFF
,
inclusive (i.e. is a high surrogate), but it is the last code unit in
the string, or the next code unit is not a low surrogate.0xDC00
–0xDFFF
,
inclusive (i.e. is a low surrogate), but it is the first code unit in
the string, or the previous code unit is not a high surrogate.Lone surrogates do not represent any Unicode character. Although most
JavaScript built-in methods handle them correctly because they all work
based on UTF-16 code units, lone surrogates are often not valid values
when interacting with other systems - for example, encodeURI()
will throw a URIError
for lone surrogates, because URI encoding uses UTF-8 encoding, which
does not have any encoding for lone surrogates. Strings not containing
any lone surrogates are called well-formed strings, and are safe to be used with functions that do not deal with UTF-16 (such as encodeURI()
or TextEncoder
). You can check if a string is well-formed with the isWellFormed()
method, or sanitize lone surrogates with the toWellFormed()
method.
On top of Unicode characters, there are certain sequences of Unicode
characters that should be treated as one visual unit, known as a grapheme cluster.
The most common case is emojis: many emojis that have a range of
variations are actually formed by multiple emojis, usually joined by the
<ZWJ> (U+200D
) character.
You must be careful which level of characters you are iterating on. For example, split("")
will split by UTF-16 code units and will separate surrogate pairs.
String indexes also refer to the index of each UTF-16 code unit. On the
other hand, @@iterator()
iterates by Unicode code points. Iterating through grapheme clusters will require some custom code.
"😄".split(""); // ['\ud83d', '\ude04']; splits into two lone surrogates // "Backhand Index Pointing Right: Dark Skin Tone" [..."👉🏿"]; // ['👉', '🏿'] // splits into the basic "Backhand Index Pointing Right" emoji and // the "Dark skin tone" emoji // "Family: Man, Boy" [..."👨👦"]; // [ '👨', '', '👦' ] // splits into the "Man" and "Boy" emoji, joined by a ZWJ // The United Nations flag [..."🇺🇳"]; // [ '🇺', '🇳' ] // splits into two "region indicator" letters "U" and "N". // All flag emojis are formed by joining two region indicator letters
Source: Mozilla, https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.