Conclusion

This article presents a solution to the mixed AL balancing problem caused by product mix change. The proposed heuristic aims to reduce capacity constraints on workstations within a defined total demand for varied mix without the need for sequencing to launches of products in the AL. To do so, the proposed AL mixed target mobile balancing heuristic (RPW-MVM) is based on three constraints: (i) meet precedence relation equivalent precedence diagram; (ii) allocate the tasks to a workstation so that the total mean time weighted station does not exceed the moving target, and (iii) allocate the tasks to a workstation until the total m model time in the station does not exceed cycle time.

The RPW-MVM heuristic was applied to the AL from a company's agricultural segment. The AL analyzed is currently organized into five different workstations which are manufactured seven models of products (CL, O, MX, CB, ATI, ATU and CH) mounted through up to 29 different tasks. However, the capacity of the bottleneck situation is 28 product/turn, not satisfying the demand for products 37/turn. When applied to the system in question, the RPW-MVM heuristic allowed an increase in production capacity for the bottleneck model by 35% as a result of better distribution of tasks due to increased number of workstations (from 5 to 6). It was also confirmed dispensability sequenced the launch of products in AL. The crossing time significantly reduced the bottleneck situation of AL, requiring 78 minutes less than the old arrangement. The line Efficiency at bottleneck situation showed an improvement of 32%, while balancing efficiency increased by 11% due to the better distribution of tasks among the workstations. Finally, a comparison of the RPW-MVM and RPW traditional heuristic applied to the mixed AL was held; we observed an improvement in the balance efficiency by 4% with reducing a workstation. However, the flexibility condition was not supported by traditional RPW, concluding that only the RPW-MVM meets the assumptions made in this scenario.

It is suggested for further development the evaluating of the proposed balance by the heuristic through dynamic simulation with the aid of computer software; it aims to identify issues not covered by the current analysis, as the line Efficiency behavior according to the change in product mix. It is suggested further adaptation to balancing AL single model using the concept of moving target proposed here.