Project Crashing Optimization Strategy with Risk Consideration

Read this article. The study develops a comprehensive evaluation strategy for project management. Section 2.1, Schedule Method-CPM/PERT, suggests that CPM does not consider risk or uncertainty. What would you add to a sensitivity analysis such that it could address risks or uncertainties?

Abstract

This study aims to develop and provide a comprehensive evaluation strategy for schedule-related variations and time-cost analysis for an engineering–procurement–construction (EPC) project. Time-cost analysis is an important aspect of project scheduling, particularly in long-term and costly EPC projects. In this study, a hybrid method is proposed for the time-cost optimization strategy evaluation of a project. Monte Carlo simulation is applied to determine contingency plans and realize the effective management of estimated schedule uncertainties. A mathematical integer linear programming optimization model coded using CPLEX is developed to assess appropriate strategies for project execution under time and cost constraints. A set of project evaluation optimization models considering risk and project crash plan and the relationship between crash cost and delay penalty is also developed for assessing project feasibility. The correlation between project risk and crashing strategy has seldom been evaluated simultaneously in previous research. This work fills this research gap by quantifying the feasibility of a project, with combined data on risk, schedule, and cost as evaluation indicators. It allows project managers to consider management issues and strategies before they implement projects. A practical example with numerical applications is presented to illustrate the contribution of the decision-making support mechanism, and several managerial insights are provided.



Source: Chao Ou-Yang and Wang-Li Chen, https://www.hindawi.com/journals/mpe/2019/9649632/
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.