
Simplify Expressions by Applying Several Properties
We'll now summarize all the properties of exponents so they are all together to refer to as we simplify expressions using several properties. Notice that they are now defined for whole number exponents.
Summary of Exponent Properties
If \(a\) and \(b\) are real numbers, and \(m\) and \(n\) are whole numbers, then
Product Property | \(a^{m} \cdot a^{n}=a^{m+n}\)m+n |
Power Property | \(\left(a^{m}\right)^{n}=a^{m \cdot n}\) |
Product to a Power | \((a b)^{m}=a^{m} b^{m}\) |
Quotient Property | \( \begin{array}{l} \dfrac{a^{m}}{b^{m}}=a^{m-n}, a \neq 0, m>n \\ \dfrac{a^{m}}{a^{n}}=\dfrac{1}{a^{n-m}}, a \neq 0, n > m \end{array} \) |
Zero Exponent Definition | \(a^{0}=1, a \neq 0\) |
Quotient to a Power Property | \(\left(\dfrac{a}{b}\right)^{m}=\dfrac{a^{m}}{b^{m}}, b \neq 0\) |
Example 6.65
Simplify: \(\dfrac{\left(y^{4}\right)^{2}}{y^{6}}\).
Solution
\(\dfrac{\left(y^{4}\right)^{2}}{y^{6}}\) | |
Multiply the exponents in the numerator. | \(\dfrac{y^{8}}{y^{6}}\) |
Subtract the exponents. | \(y^{2}\) |
Try It 6.129
Simplify: \(\dfrac{\left(m^{5}\right)^{4}}{m^{7}}\).
Try It 6.130
Simplify: \(\dfrac{\left(k^{2}\right)^{6}}{k^{7}}\).
Example 6.66
Simplify: \(\dfrac{b^{12}}{\left(b^{2}\right)^{6}}\).
Solution
\(\dfrac{b^{12}}{\left(b^{2}\right)^{6}}\) | |
Multiply the exponents in the numerator. | \(\dfrac{b^{12}}{b^{12}}\) |
Subtract the exponents. | \(b^{0}\) |
Simplify. | \(1\) |
Try It 6.131
Simplify: \(\dfrac{n^{12}}{\left(n^{3}\right)^{4}}\).
Try It 6.132
Simplify: \(\dfrac{x^{15}}{\left(x^{3}\right)^{5}}\).
Example 6.67
Simplify: \(\left(\dfrac{y^{9}}{y^{4}}\right)^{2}\).
Solution
\(\left(\dfrac{y^{9}}{y^{4}}\right)^{2}\) | |
Remember parentheses come before exponents. Notice the bases are the same, so we can simplify inside the parentheses. Subtract the exponents. |
\(\left(y^{5}\right)^{2}\) |
Multiply the exponents. | \(y^{10}\) |
Try It 6.133
Simplify: \(\left(\dfrac{r^{5}}{r^{3}}\right)^{4}\).
Try It 6.134
Simplify: \(\left(\dfrac{v^{6}}{v^{4}}\right)^{3}\).
Example 6.68
Simplify: \(\left(\dfrac{j^{2}}{k^{3}}\right)^{4}\).
Solution
Here we cannot simplify inside the parentheses first, since the bases are not the same.
\(\left(\dfrac{j^{2}}{k^{3}}\right)^{4}\) | |
Raise the numerator and denominator to the third power using the Quotient to a Power Property, \(\left(\dfrac{a}{b}\right)^{m}=\dfrac{a^{m}}{b^{m}} .\). |
|
Use the Power Property and simplify. | \(\dfrac{j^{8}}{k^{12}}\) |
Try It 6.135
Simplify: \(\left(\dfrac{a^{3}}{b^{2}}\right)^{4}\).
Try It 6.136
Simplify: \(\left(\dfrac{q^{7}}{r^{5}}\right)^{3}\).
Example 6.69
Simplify: \(\left(\dfrac{2 m^{2}}{5 n}\right)^{4}\).
Solution
\(\left(\dfrac{2 m^{2}}{5 n}\right)^{4}\) | |
Raise the numerator and denominator to the fourth power, using the Quotient to a Power Property, \(\left(\dfrac{a}{b}\right)^{m}=\dfrac{a^{m}}{b^{m}}\). | \(\dfrac{\left(2 m^{2}\right)^{4}}{(5 n)^{4}}\))4 |
Raise each factor to the fourth power. | \(\dfrac{\left(2 m^{2}\right)^{4}}{(5 n)^{4}}\) |
Use the Power Property and simplify. | \(\dfrac{16 m^{8}}{625 n^{4}}\) |
Try It 6.137
Simplify: \(\left(\dfrac{7 x^{3}}{9 y}\right)^{2}\).
Try It 6.138
Simplify: \(\left(\dfrac{3 x^{4}}{7 y}\right)^{2}\).
Example 6.70
Simplify: \(\dfrac{\left(x^{3}\right)^{4}\left(x^{2}\right)^{5}}{\left(x^{6}\right)^{5}}\).
Solution
\(\dfrac{\left(x^{3}\right)^{4}\left(x^{2}\right)^{5}}{\left(x^{6}\right)^{5}}\) | |
Use the Power Property, \(\left(a^{m}\right)^{n}=a^{m \cdot n}\). | \(\dfrac{\left(x^{12}\right)\left(x^{10}\right)}{\left(x^{30}\right)}\) |
Add the exponents in the numerator. | \(\dfrac{x^{22}}{x^{30}}\) |
Use the Quotient Property, aman=1an−m. | \(\dfrac{1}{x^{8}}\) |
Try It 6.139
Simplify: \(\dfrac{\left(a^{2}\right)^{3}\left(a^{2}\right)^{4}}{\left(a^{4}\right)^{5}}\).
Try It 6.140
Simplify:\(\dfrac{\left(p^{3}\right)^{4}\left(p^{5}\right)^{3}}{\left(p^{7}\right)^{6}}\).
Example 6.71
Simplify: \(\dfrac{\left(10 p^{3}\right)^{2}}{(5 p)^{3}\left(2 p^{5}\right)^{4}}\).
Solution
\(\dfrac{\left(10 p^{3}\right)^{2}}{(5 p)^{3}\left(2 p^{5}\right)^{4}}\) | |
Use the Product to a Power Property, \((a b)^{m}=a^{m} b^{m}\). | \(\dfrac{(10)^{2}\left(p^{3}\right)^{2}}{(5)^{3}(p)^{3}(2)^{4}\left(p^{5}\right)^{4}}\) |
Use the Power Property, \(\left(a^{m}\right)^{n}=a^{m \cdot n}\). | \(\dfrac{100 p^{6}}{125 p^{3} \cdot 16 p^{20}}\) |
Add the exponents in the denominator. | \(\dfrac{100 p^{6}}{125 \cdot 16 p^{23}}\) |
Use the Quotient Property, \(\dfrac{a^{m}}{a^{n}}=\dfrac{1}{a^{n-m}}\). | \(\dfrac{100}{125 \cdot 16 p^{17}}\) |
Simplify. | \(\dfrac{1}{20 p^{17}}\) |
Try It 6.141
Simplify: \(\dfrac{\left(3 r^{3}\right)^{2}\left(r^{3}\right)^{7}}{\left(r^{3}\right)^{3}}\).
Try It 6.142
Simplify: \(\dfrac{\left(2 x^{4}\right)^{5}}{\left(4 x^{3}\right)^{2}\left(x^{3}\right)^{5}}\).