Multiply Monomials

Since a monomial is an algebraic expression, we can use the properties of exponents to multiply monomials.

Example 6.26

Multiply: \(\left(3 x^{2}\right)\left(-4 x^{3}\right)\).

Solution
  \(\left(3 x^{2}\right)\left(-4 x^{3}\right)\)
Use the Commutative Property to rearrange the terms. \(3 \cdot(-4) \cdot x^{2} \cdot x^{3}\)
Multiply. \(-12 x^{5}\)
Try It 6.51

Multiply: \(\left(5 y^{7}\right)\left(-7 y^{4}\right)\). 

Try It 6.52

Multiply: \(\left(-6 b^{4}\right)\left(-9 b^{5}\right)\).

Example 6.27

Multiply: \(\left(\frac{5}{6} x^{3} y\right)\left(12 x y^{2}\right)\).

Solution
  \(\left(\frac{5}{6} x^{3} y\right)\left(12 x y^{2}\right)\)
Use the Commutative Property to rearrange the terms. \(\frac{5}{6} \cdot 12 \cdot x^{3} \cdot x \cdot y \cdot y^{2}\)
Multiply. \(10 x^{4} y^{3}\)
Try It 6.53


Multiply: \((\frac{2}{5}a^4b^3)(15ab^3)\).

Try It 6.54


Multiply: \((\frac{2}{3}r^5s)(12r^6s^7)\).


Source: OpenStax, https://openstax.org/books/elementary-algebra/pages/6-2-use-multiplication-properties-of-exponents
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.