Even as humans have sought to dominate nature, the reality is that business systems and the economy are subsystems of the biosphere. Read this chapter to discover the four key "meta-concepts": sustainable development, environmental justice, earth systems engineering and management, and sustainability science. You will also find practical frameworks and tools businesses can apply to develop sustainable innovation.
What is the difference between eco-efficiency and ecosystem solutions? How can the meta-concepts, frameworks, and tools be applied to identify sustainable business practices?
3.3 Core Ideas and Metaconcepts
Earth Systems Engineering and Management
With discussion of earth systems engineering (ESE), we transition from social and community concerns to human impacts on large-scale natural systems. Sometimes referred to as Earth Systems Engineering and management, ESE is a broad concept that builds from these basic premises:
- People have altered the earth for millennia, often in unintended ways with enduring effects, such as the early deforestation of ancient Greece.
- The scale of that alteration has increased dramatically with industrialization and the population growth of the twentieth century.
- Our institutions, ethics, and other behaviors have yet to catch up to the power of our technology.
- Since the world has become increasingly less natural and more- or entirely- an artifact of human activity, we should use technology to help us understand the impact of our alterations in the long and short terms. Instead of desisting from current practice, we should continue to use technology to intervene in the environment albeit in more conscious, sustainable ways. However, the interactions of human and natural systems are complex, so we must improve our ability to manage each by better understanding the science of how they operate and interact, building better tools to manage them, and creating better policies to guide us.
Defining ESE
The often unintended consequences of our technologies reflect our incomplete understanding of existing data and the inherent complexities of natural and human systems. Earth systems engineering is a holistic approach to overcoming these shortcomings. The goals of ESE are to understand the complex interactions among natural and human systems, to predict and monitor more accurately the impacts of engineered systems, and to optimize those systems to provide maximum benefits for people and for the planet. Many of the science, engineering, and ethical tools we will need to meet this enormous challenge have yet to be developed.
In 2000, Nobel laureate Paul Crutzen coined the term "anthropocene" to describe the intense impact of humanity upon the world. Anthropocene designates a new geological era with the advent of the Industrial Revolution. In this era, as opposed to the previous Holocene era, humans increasingly dominate the chemical and geologic processes of Earth, and they may continue to do so for tens of thousands of years as increased concentrations of GHGs linger in the atmosphere.
Professor Braden Allenby, a former vice president of AT&T who holds degrees in law, economics, and environmental science, argues we must embrace this anthropogenic (human-designed) world and make the most of it. An early and consistent proponent of ESE, he wrote in 2000, "The issue is not whether the earth will be engineered by the human species, it is whether humans will do so rationally, intelligently, and ethically". Thus ESE differs from other sustainability concepts and frameworks that seek to reduce humanity's impact on nature and to return nature to a more equal relationship with people. Allenby believes technology gives people options, and investing in new technologies to make human life sustainable will have a greater impact than trying to change people's behaviors through laws or other social pressures.
Brad Allenby Discusses Earth Systems Engineering
ESE could be deployed at various scales. One of the more extreme is reengineering, which emerged in the 1970s and resurfaced after 2000 as efforts to curb greenhouse gas emissions floundered and people reconsidered ways to arrest or reverse climate change. Geoengineering would manipulate the global climate directly and massively, either by injecting particles such as sulfur dioxide into the atmosphere to block sunlight or by sowing oceans with iron to encourage the growth of algae that consume carbon dioxide (CO2). The potential for catastrophic consequences has often undermined geoengineering schemes, many of which are already technologically feasible and relatively cheap. On the scale of individual organisms, ESE could turn to genetic engineering, such as creating drought-resistant plants or trees that sequester more CO2.
Reflection on ESE
David Keith, an environmental scientist at the University of Calgary, talks about the moral hazard of ESE at the 2007 Technology, Entertainment, and Design (TED) Conference.
Keith discusses the history of geoengineering since the 1950s and argues that more people must seriously discuss ESE because it would be cheap and easy for any one country to pursue unilaterally, for better or worse.