Even as humans have sought to dominate nature, the reality is that business systems and the economy are subsystems of the biosphere. Read this chapter to discover the four key "meta-concepts": sustainable development, environmental justice, earth systems engineering and management, and sustainability science. You will also find practical frameworks and tools businesses can apply to develop sustainable innovation.
What is the difference between eco-efficiency and ecosystem solutions? How can the meta-concepts, frameworks, and tools be applied to identify sustainable business practices?
3.4 Practical Frameworks and Tools
The Natural Step
TNS is both a framework for understanding ecological principles and environmental problems and an international nonprofit education, consultation, and research institution based in Sweden. TNS was founded in 1989 by Swedish pediatric oncologist Dr. Karl-Henrik Robèrt. In his medical practice, Dr. Robèrt observed an increase of rare cancers in children who were too young to have their cells damaged through lifestyle choices. He began to explore human-caused pollution (environmental) causes - outcomes of industrial and commercial activity. Once engaged in the process and frustrated by the polarized public and scientific debates over pollution, Dr. Robèrt began enlisting leading Swedish scientists to identify irrefutable principles from which productive debate could follow. These principles became the basis for TNS framework now used by many businesses worldwide to guide strategy and product design.
The principles the scientists distinguished during the consensus-building process are three well-known and very basic physical laws. The first law of thermodynamics, also known as the law of conservation of energy, states that energy cannot be created or destroyed, only changed in form. Whether electrical, chemical, kinetic, heat, or light, the total energy remains constant. Similarly, the law of conservation of matter tells us that the total amount of matter is constant and cannot be created or destroyed.These two laws assume that matter and energy are not being converted into each other through nuclear processes, but when fission and fusion are taken into account, mass-energy becomes the new conserved quantity. Finally, by the second law of thermodynamics, we know that matter and energy tend to disperse. Greater entropy, or disorder, is the inevitable outcome. Think about the decomposition of discarded items. Over time, they lose their structure, order, and concentration; in other words, they lose their quality.
In our biosphere, these laws imply things do not appear or disappear; they only take on different forms. All energy and matter remain, either captured temporarily in products or dispersed into the air, water, and soil. The matter humans introduce into the biosphere from the earth's crust (e.g., by mining and drilling) or from corporate research laboratories (synthetic compounds) eventually is released and dispersed into the larger natural systems, including the air we breathe, water we drink, and food we eat. Furthermore, humans do not literally "consume" products. We only consume or use up their quality, their purity, and their manufactured temporary structure. Thus there is no "away" when we throw things away.
However, if the law of entropy dictates that matter and energy tend toward disorder rather than toward complex materials and ecosystems, what keeps the earth's systems running? An outside energy input is needed to create order. That energy is the sun. While the earth is essentially a closed system with respect to matter, it is an open system with respect to energy. Hence net increases in material quality on Earth ultimately derive from solar energy, present or ancient.
Green plant cells, as loci of photosynthesis, curb entropy by using sunlight to generate order. The cells produce more structure, quality, and order than they destroy through dissipation. Plants thereby regulate the biosphere by capturing carbon dioxide (CO2), producing oxygen for animal life, and creating food. Fossil fuels, meanwhile, are simply that: the end products of photosynthesis in fossil form.
The Natural Step for Business
To summarize, while the Earth is a closed system with regard to matter, it is an open system with respect to energy. This is the reason why the system hasn't already run down with all of its resources being converted to waste. The Earth receives light from the sun and emits heat into space. The difference between these two forms of energy creates the physical conditions for order in the biosphere - the thin surface layer in the path of the sun's energy flow, in which all of the necessary ingredients for life as we know it are mingled.
Cyclical systems lie at the heart of TNS framework. While the natural world operates in a continuously regenerative cyclical process - photosynthesis produces oxygen and absorbs CO2; plants are consumed, die, and decay, becoming food for microbial life; and the cycle continues - humankind has typically used resources in a linear fashion, producing waste streams both visible and molecular (invisible) that cannot all be absorbed and reassimilated by nature, at least not within time frames relevant for preservation of human health and extension of prosperity to billions more who demand a better life. The result is increasing accumulations of pollution and waste coupled with a declining stock of natural resources. In the case of oil, global society must address both declining resources and control of existing resources by either unstable governments or regimes whose aims can oppose their own populations' and other countries' well-being.
TNS System Conditions
With foundational scientific principles dictating a compelling logic that guides decision making, a framework of system conditions followed to form TNS system conditions:
- The first system condition states that "substances from the earth's crust must not systematically increase in the ecosphere". This means that the rate of extraction of fossil fuels, metals, and other minerals must not exceed the pace of their slow redeposit and reintegration into the earth's crust. The phrase "systematically increase" in the systems conditions deserves elaboration. The natural system complexity that has built and sustains the biosphere maintains systemic equilibrium within a certain range. We now recognize that humans contribute to CO2 atmospheric buildup, potentially tipping climate to a new equilibrium to which we must adapt.
- The second system condition requires that "substances produced by society must not systematically increase in the ecosphere". These substances, synthetic compounds created in laboratories, must be produced, used, and released at a rate that does not exceed the rate with which they can be broken down and integrated into natural cycles or safely incorporated in the earth's crust (soil, water).
- The third condition states that "the physical basis for productivity and diversity of nature must not be systematically diminished". This requirement protects the productive capacity and diversity of the earth's ecosystems as well as the green plant cells, the photosynthesizers on which the larger ecological systems depend.
- Finally, the fourth system condition, a consideration of justice, calls for the "fair and efficient use of resources with respect to meeting human needs".
Under TNS framework, these four system conditions act as a compass that can guide companies, governments, nonprofit organizations, and even individuals toward sustainability practices and innovation. Here, "sustainability" explicitly refers to a carrying capacity or ability of natural systems to continue the age-old regenerative processes that have maintained the requisite chemistry and systems balance to support life as we know it.
Figure 3.2 TNS System Conditions
TNS framework has been applied in many corporations and is seen by some as a logical extension of quality management and strategic systems thinking. It incorporates environmental and health protection into decision making by using scientific principles. TNS allows a company to understand the physical laws that drive environmental problems and defines the broad system conditions that form a "sustainable" society. These conditions provide a vehicle to assess progress, and from them companies can develop a strategy applicable to their products and services. Design teams can ask whether particular product designs, materials selection, and manufacturing processes meet each of the system conditions and can adjust in "natural steps" - that is, steps that are consistent with financially sound decision making in the direction of meeting the system conditions. TNS does not provide a detailed how-to regarding specific product design; however, with the knowledge and framework provided by TNS, companies can develop a more informed approach and strategic position and begin to take concrete steps customized to their unique circumstance with respect to natural resource use and waste streams.
The Natural Step as an Institution
To learn more about The Natural Step as a framework or institution, go to http://www.naturalstep.org.