7. Conclusion

While the neural basis for problem-solving, creativity and insight have been studied extensively in the past, there is still a lack of understanding of the role of the environment in informing the problem-solving process. Current research has primarily focused on internally-guided mental processes for idea generation and evaluation. However, the type of real world problem-solving (RWPS) that is often considered a hallmark of human intelligence has involved both a dynamic interaction with the environment and the ability to handle intervening and interrupting events. In this paper, I have attempted to synthesize the literature into a unified theory of RWPS, with a specific focus on ways in which the environment can help problem-solve and the key neural networks involved in processing and utilizing relevant and useful environmental information. Understanding the neural basis for RWPS will allow us to be better situated to solve difficult problems. Moreover, for researchers in computer science and artificial intelligence, clues into the neural underpinnings of the computations taking place during creative RWPS, can inform the design the next generation of helper and exploration robots which need these capabilities in order to be resourceful and resilient in the open-world.