Completion requirements
OLAP systems allow flexible and dynamic questions to be asked of big data. By combining OLAP with multicriteria decision-making techniques, we can allow business executives to incorporate insights from real-world data into the systematic evaluation of different business options. This improves the quality of complex decisions and leads to better business outcomes with the same resources.
Conclusion
In this contribution, we have proposed a guided and simplified implementation of our decision-making approach proposed in our previous contributions combining multicriteria analysis, fuzzy analysis, and OLAP systems. The proposed implementation allows the application of the notions of multicriteria analysis and that of OLAP analysis, taking into account the subjective and objective assessments of the decision makers during the evaluation process. The obtained results allow decision makers to have a comprehensive and detailed view concerning the BI solutions to be adopted in the treatment of certain complex situations that evolve over time. The evaluation procedure begins with the specification of the criteria (number of criteria) to which the importance weights must be calculated using the AMCD web interface. This latter ensures a collective decision making during the process of evaluating the selected and segmented criteria through MDX queries executed at the OLAP level. Then, the OLAP_MML interface is used to evaluate the alternatives for a period of time starting from 2000 to 2013, by taking advantage of the analytic flexibility that the OLAP server can provide. The evaluation conducted by OLAP is a segmentation of potential alternatives based on the values of the selected evaluation criteria. The first four alternatives resulting from the ranking provided by OLAP are selected to be evaluated by PROMETHEE method, taking into account the importance weights of the criteria already calculated. The objective is to enable decision makers to intervene during the analysis process by proposing linguistic variables to simplify the final assessment of alternatives when making decisions.